On the performance of LCC optimization software OPERA-MILP by comparison with building energy simulation software IDA ICE

2018 ◽  
Vol 128 ◽  
pp. 305-319 ◽  
Author(s):  
Vlatko Milić ◽  
Klas Ekelöw ◽  
Bahram Moshfegh
Author(s):  
M E Crowley ◽  
M S J Hashmi

The stability of numerical methods used for finite difference thermal modelling of buildings is discussed. A known instability in a commonly used process is described and alternative numerical methods with suitable stability properties are identified. With a view to selecting the optimum numerical method, the building energy simulation problem is characterized mathematically and appropriate implicit solvers are compared on the basis of accuracy and computational effort using a building-related test problem prepared for this purpose. A recently developed numerical method with the necessary strong stability is found to possess higher computational efficiency than methods frequently used in this application and it is recommended for inclusion in building energy simulation software.


2012 ◽  
Vol 178-181 ◽  
pp. 147-150
Author(s):  
Nan Wang ◽  
Mahjoub Elnimeiri

This research explores the influence of different street geometry towards reducing the energy consumption in buildings by utilizing building energy simulation software. In different climate condition, the different street geometry has different influence on building’s energy consumption. This influence is quantified in this research. It is found that in three climate zones – Beijing, Shanghai and Guangzhou, the energy consumption of buildings is changed according to different H/W ratio of buildings. This finding determines that the optimum street geometry will be different in these climate zones. The designers should consider such difference before doing architecture or urban planning work. This research will also provide some suggestions and recommendations to the energy-efficient community design based on the findings.


Author(s):  
Adnan Al Anzi ◽  
Basma Al-Shammeri

The weather conditions in Kuwait impose a difficult HVAC building operation due to the hot and arid climate. Most of the time, high ambient temperatures in Kuwait exceed 48° C, which result in difficult indoor comfort condition. Mosques are religious buildings with intermittent occupancy, due to their special cultural and religious requirements. In fact, prayers schedule is scattered throughout five daily times, with a maximum use around noon times on Fridays only. In addition, the number of mosques is increasing, due to population growth, and imposes high electrical load requirements on the public authorities in Kuwait. This paper demonstrates and analyzes thermal behavior of a typical mosque in the state of Kuwait. An energy audit is performed using state of the art building energy simulation software (Visual DOE 4.1). The simulation tool is intended to analyze the thermal behavior of the audited mosques and is used to asses potential energy conservation opportunities for future mosque design in Kuwait. Data collection including drawings, site visits and total daily kWh monitoring are performed to carry out the simulation analysis. It is found that an annual energy use savings up to 72% can be achieved through improvements of buildings envelope designs and operating strategies. In addition, life cycle cost LCC analysis is performed to make economical assessment of the energy conservation measures that are evaluated in this study. It was found that a LCC saving around 40% can be achieved with a simple payback period of less than 4 years.


2018 ◽  
Vol 38 ◽  
pp. 03019 ◽  
Author(s):  
Jun Zhang ◽  
Ri Yi Li

Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.


Sign in / Sign up

Export Citation Format

Share Document