Electrical injury alters ion channel expression levels and electrophysiological properties in rabbit dorsal root ganglia neurons

Burns ◽  
2011 ◽  
Vol 37 (2) ◽  
pp. 304-311 ◽  
Author(s):  
Rui Chen ◽  
Yue-Jun Li ◽  
Jin-Qing Li ◽  
Xiao-Xing Lv ◽  
Shao-Zong Chen ◽  
...  
2001 ◽  
Vol 21 (8) ◽  
pp. 2678-2686 ◽  
Author(s):  
Jaime Garcı́a-Añoveros ◽  
Tarek A. Samad ◽  
Ljiljana Žuvela-Jelaska ◽  
Clifford J. Woolf ◽  
David P. Corey

2021 ◽  
Vol 22 (11) ◽  
pp. 5499
Author(s):  
Veronica Corsetti ◽  
Carla Perrone-Capano ◽  
Michael Sebastian Salazar Intriago ◽  
Elisabetta Botticelli ◽  
Giancarlo Poiana ◽  
...  

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a “cholinergic locus”, and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


2008 ◽  
Vol 173 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Angela M. Seggio ◽  
Karen S. Ellison ◽  
Matthew R. Hynd ◽  
William Shain ◽  
Deanna M. Thompson

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingling Zhu ◽  
Yanxiu Wang ◽  
Xiaowen Lin ◽  
Xu Zhao ◽  
Zhi jian Fu

The effects of ozone on hippocampal expression levels of brain-derived neurotrophic factor (BDNF) and c-fos protein (Fos) were evaluated in rats with chronic compression of dorsal root ganglia (CCD). Forty-eight adult female Sprague-Dawley rats were randomly divided into the following 4 groups ( n = 12 ): sham operation (sham group), CCD group, CCD with 20 μg/ml of ozone ( CCD + A O 3 group), and CCD with 40 μg/ml of ozone ( CCD + B O 3 group). Except the sham group, unilateral L5 dorsal root ganglion (DRG) compression was performed on all other groups. On days 1, 2, and 4 after the operation, the CCD + A O 3 and CCD + B O 3 groups were injected with 100 μl of ozone with concentrations of 20 and 40 μg/ml, respectively. Thermal withdrawal latencies (TWLs) and mechanical withdrawal thresholds (MWTs) were measured at various time points before and after the operation. BDNF and Fos expressions were examined in the extracted hippocampi using immunohistochemistry. The TWLs and MWTs of CCD model rats that received ozone were lower with decreased BDNF and increased Fos expression levels, on day 21 after the operation, compared to those of the sham group ( P < 0.05 ). The TWLs and MWTs of the CCD + A O 3 and CCD + B O 3 groups were higher with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD group ( P < 0.05 ). The TWLs were longer and the MWTs were higher in the CCD + B O 3 group at each time point with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD + A O 3 group ( P < 0.05 ). Our results revealed that ozone can relieve the neuropathic pain caused by the pathological neuralgia resulting from DRG compression in rats. The mechanism of action for ozone is likely associated with changes in BDNF and Fos expression levels in the hippocampus.


Sign in / Sign up

Export Citation Format

Share Document