scholarly journals 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

2014 ◽  
Vol 73 ◽  
pp. 164-176 ◽  
Author(s):  
Hongzhu Cai ◽  
Bin Xiong ◽  
Muran Han ◽  
Michael Zhdanov
2020 ◽  
Vol 17 (3) ◽  
pp. 349-360
Author(s):  
Xiang-Zhong Chen ◽  
Yun-He Liu ◽  
Chang-Chun Yin ◽  
Chang-Kai Qiu ◽  
Jie Zhang ◽  
...  

2021 ◽  
pp. 105678952110405
Author(s):  
Young Kwang Hwang ◽  
Suyeong Jin ◽  
Jung-Wuk Hong

In this study, an effective numerical framework for fracture simulations is proposed using the edge-based smoothed finite element method (ES-FEM) and isotropic damage model. The duality between the Delaunay triangulation and Voronoi tessellation is utilized for the mesh construction and the compatible use of the finite element solution with the Voronoi-cell lattice geometry. The mesh irregularity is introduced to avoid calculating the biased crack path by adding random variation in the nodal coordinates, and the ES-FEM elements are defined along the Delaunay edges. With the Voronoi tessellation, each nodal mass is calculated and the fractured surfaces are visualized along the Voronoi edges. The rotational degrees of freedom are implemented for each node by introducing the elemental formulation of the Voronoi-cell lattice model, and the accurate visualizations of the rotational motions in the Voronoi diagram are achieved. An isotropic damage model is newly incorporated into the ES-FEM formulation, and the equivalent elemental length is introduced with an additional geometric factor to simulate the consistent softening behaviors with reducing the mesh sensitivity. The full matrix form of the smoothed strain-displacement matrix is constructed for optimal use in the element-wise computations during explicit time integration, and parallel computing is implemented for the enhancement of the computational efficiency. The simulated results are compared with the theoretical solutions or experimental results, which demonstrates the effectiveness of the proposed methodology in the simulations of the quasi-brittle fractures.


Sign in / Sign up

Export Citation Format

Share Document