An edge-based finite element method for 3D marine controlled-source electromagnetic forward modeling with a new type of second-order tetrahedral edge element

2018 ◽  
Vol 57 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Hanbo Chen ◽  
Tonglin Li ◽  
Huiyan Shi ◽  
Heng Wang ◽  
Shaopeng Li
2019 ◽  
Vol 16 (05) ◽  
pp. 1840010 ◽  
Author(s):  
Yuki Onishi

A new type of smoothed finite element method (S-FEM), F-barES-FEM-T4, is demonstrated in static large deformation elastoplastic cases. F-barES-FEM-T4 combines the edge-based S-FEM (ES-FEM) and the node-based S-FEM (NS-FEM) for 4-node tetrahedral (T4) elements with the aid of the F-bar method in order to resolve the major issues of Selective ES/NS-FEM-T4. As well as most of the other S-FEMs, F-barES-FEM-T4 inherits pure displacement-based formulation and thus has no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the smoothing level so that pressure checkerboarding (oscillation) is suppressed reasonably. Some examples of static large deformation analyses for elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional hybrid T4 element formulation.


2013 ◽  
Vol 10 (01) ◽  
pp. 1340004 ◽  
Author(s):  
C. V. LE ◽  
H. NGUYEN-XUAN ◽  
H. ASKES ◽  
T. RABCZUK ◽  
T. NGUYEN-THOI

This paper presents a novel numerical procedure for limit analysis of plane problems using edge-based smoothed finite element method (ES-FEM) in combination with second-order cone programming. In the ES-FEM, the discrete weak form is obtained based on the strain smoothing technique over smoothing domains associated with the edges of the elements. Using constant smoothing functions, the incompressibility condition only needs to be enforced at one point in each smoothing domain, and only one Gaussian point is required, ensuring that the size of the resulting optimization problem is kept to a minimum. The discretization problem is transformed into the form of a second-order cone programming problem which can be solved using highly efficient interior-point solvers. Finally, the efficacy of the procedure is demonstrated by applying it to various benchmark plane stress and strain problems.


2013 ◽  
Vol 448-453 ◽  
pp. 3762-3765
Author(s):  
Gui Ju Wu ◽  
Xiang Yun Hu ◽  
Hui Liu ◽  
Guang Liang Yang

Controlled-source electromagnetic (CSEM) is an artificial source electromagnetic sounding method. which developed on the basis of magnetotelluric sounding. For showing the CSEM forward modeling result, numerical simulation method must be adopted. A discontinuous Galerkin finite element method is presented to solve problems based on formulation.


2020 ◽  
Vol 17 (3) ◽  
pp. 349-360
Author(s):  
Xiang-Zhong Chen ◽  
Yun-He Liu ◽  
Chang-Chun Yin ◽  
Chang-Kai Qiu ◽  
Jie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document