scholarly journals Numerical solutions of nonlinear evolution equations using variational iteration method

2007 ◽  
Vol 207 (1) ◽  
pp. 111-120 ◽  
Author(s):  
A.A. Soliman ◽  
M.A. Abdou
Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1473 ◽  
Author(s):  
Abdulghani Alharbi ◽  
Mohammed B. Almatrafi

Solutions such as symmetric, periodic, and solitary wave solutions play a significant role in the field of partial differential equations (PDEs), and they can be utilized to explain several phenomena in physics and engineering. Therefore, constructing such solutions is significantly essential. This article concentrates on employing the improved exp(−ϕ(η))-expansion approach and the method of lines on the variant Boussinesq system to establish its exact and numerical solutions. Novel solutions based on the solitary wave structures are obtained. We present a comprehensible comparison between the accomplished exact and numerical results to testify the accuracy of the used numerical technique. Some 3D and 2D diagrams are sketched for some solutions. We also investigate the L2 error and the CPU time of the used numerical method. The used mathematical tools can be comfortably invoked to handle more nonlinear evolution equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Konuralp ◽  
H. Hilmi Sorkun

Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay functionθ(t)vanishes inside the integral limits such thatθ(t)=qtfor0<q<1,t≥0. Either the approximate solutions that are converging to the exact solutions or the exact solutions of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in figures and tables.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 33-46 ◽  
Author(s):  
Durgun Dogan ◽  
Ali Konuralp

In this paper, time-fractional non-linear partial differential equation with proportional delays are solved by fractional variational iteration method taking into account modified Riemann-Liouville fractional derivative. The numerical solutions which are calculated by using this method are better than those obtained by homotopy perturbation method and differential transform method with same data set and approximation order. On the other hand, to improve the solutions obtained by fractional variational iteration method, residual error function is used. With this additional process, the resulting approximate solutions are getting closer to the exact solutions. The results obtained by taking into account different values of variables in the domain are supported by compared tables and graphics in detail.


Sign in / Sign up

Export Citation Format

Share Document