scholarly journals Variational Iteration Method for Volterra Functional Integrodifferential Equations with Vanishing Linear Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Konuralp ◽  
H. Hilmi Sorkun

Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay functionθ(t)vanishes inside the integral limits such thatθ(t)=qtfor0<q<1,t≥0. Either the approximate solutions that are converging to the exact solutions or the exact solutions of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in figures and tables.

2018 ◽  
Vol 13 (02) ◽  
pp. 2050042
Author(s):  
Fernane Khaireddine

In this paper, we use the variational iteration method (VIM) to construct approximate solutions for the general [Formula: see text]th-order integro-differential equations. We show that his method can be effectively and easily used to solve some classes of linear and nonlinear Volterra integro-differential equations. Finally, some numerical examples with exact solutions are given.


2015 ◽  
Vol 19 (4) ◽  
pp. 1195-1199 ◽  
Author(s):  
Jun-Feng Lu

In this paper, we solve the variant Boussinesq equation by the modified variational iteration method. The approximate solutions to the initial value problems of the variant Boussinesq equation are provided, and compared with the exact solutions. Numerical experiments show that the modified variational iteration method is efficient for solving the variant Boussinesq equation.


2019 ◽  
Vol 3 (3) ◽  
pp. 43 ◽  
Author(s):  
Baleanu ◽  
Jassim ◽  
Al Qurashi

The paper presents a new analytical method called the local fractional Laplace variational iteration method (LFLVIM), which is a combination of the local fractional Laplace transform (LFLT) and the local fractional variational iteration method (LFVIM), for solving the two-dimensional Helmholtz and coupled Helmholtz equations with local fractional derivative operators (LFDOs). The operators are taken in the local fractional sense. Two test problems are presented to demonstrate the efficiency and the accuracy of the proposed method. The approximate solutions obtained are compared with the results obtained by the local fractional Laplace decomposition method (LFLDM). The results reveal that the LFLVIM is very effective and convenient to solve linear and nonlinear PDEs.


2016 ◽  
Vol 4 (2) ◽  
pp. 52 ◽  
Author(s):  
V.K. Shchigolev

A new approach in studying the planetary orbits and deflection of light in General Relativity (GR) by means of the Variational iteration method (VIM) is proposed in this paper. For this purpose, a brief review of the nonlinear geodesic equations in the spherical symmetry spacetime and the main ideas of VIM are given. The appropriate correct functionals are constructed for the geodesics in the spacetime of Schwarzschild, Reissner-Nordström and Kiselev black holes. In these cases, the Lagrange multiplier is obtained from the stationary conditions for the correct functionals. Then, VIM leads to the simple problem of computation of the integrals in order to obtain the approximate solutions of the geodesic equations. On the basis of these approximate solutions, the perihelion shift and the light deflection have been obtained for the metrics mentioned above.


Author(s):  
Hossein Jafari ◽  
Hale Tajadodi ◽  
Dumitru Baleanu

AbstractIn this paper, we introduce a modified variational iteration method (MVIM) for solving Riccati differential equations. Also the fractional Riccati differential equation is solved by variational iteration method with considering Adomians polynomials for nonlinear terms. The main advantage of the MVIM is that it can enlarge the convergence region of iterative approximate solutions. Hence, the solutions obtained using the MVIM give good approximations for a larger interval. The numerical results show that the method is simple and effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

Variational iteration method and homotopy perturbation method are used to solve the fractional Fredholm integrodifferential equations with constant coefficients. The obtained results indicate that the method is efficient and also accurate.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 439-444 ◽  
Author(s):  
Said Abbasbandy ◽  
Elyas Shivanian

AbstractIn this paper, the variational iteration method is proposed to solve Fredholm’s nth-order integrodifferential equations. The initial approximation is selected wisely which satisfies the initial conditions. The results reveal that this method is very effective and convenient in comparison with other methods.


Sign in / Sign up

Export Citation Format

Share Document