spectral collocation methods
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 4)

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 385
Author(s):  
Călin-Ioan Gheorghiu

This work is about the use of some classical spectral collocation methods as well as with the new software system Chebfun in order to compute the eigenpairs of some high order Sturm–Liouville eigenproblems. The analysis is divided into two distinct directions. For problems with clamped boundary conditions, we use the preconditioning of the spectral collocation differentiation matrices and for hinged end boundary conditions the equation is transformed into a second order system and then the conventional ChC is applied. A challenging set of “hard” benchmark problems, for which usual numerical methods (FD, FE, shooting, etc.) encounter difficulties or even fail, are analyzed in order to evaluate the qualities and drawbacks of spectral methods. In order to separate ``good” and “bad” (spurious) eigenvalues, we estimate the drift of the set of eigenvalues of interest with respect to the order of approximation N. This drift gives us a very precise indication of the accuracy with which the eigenvalues are computed, i.e., an automatic estimation and error control of the eigenvalue error. Two MATLAB codes models for spectral collocation (ChC and SiC) and another for Chebfun are provided. They outperform the old codes used so far and can be easily modified to solve other problems.


Computation ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Călin-Ioan Gheorghiu

We are concerned with the study of some classical spectral collocation methods, mainly Chebyshev and sinc as well as with the new software system Chebfun in computing high order eigenpairs of singular and regular Schrödinger eigenproblems. We want to highlight both the qualities as well as the shortcomings of these methods and evaluate them in conjunction with the usual ones. In order to resolve a boundary singularity, we use Chebfun with domain truncation. Although it is applicable with spectral collocation, a special technique to introduce boundary conditions as well as a coordinate transform, which maps an unbounded domain to a finite one, are the special ingredients. A challenging set of “hard”benchmark problems, for which usual numerical methods (f. d., f. e. m., shooting, etc.) fail, were analyzed. In order to separate “good”and “bad”eigenvalues, we have estimated the drift of the set of eigenvalues of interest with respect to the order of approximation and/or scaling of domain parameter. It automatically provides us with a measure of the error within which the eigenvalues are computed and a hint on numerical stability. We pay a particular attention to problems with almost multiple eigenvalues as well as to problems with a mixed spectrum.


Author(s):  
Elliott S. Wise ◽  
Jiri Jaros ◽  
Ben T. Cox ◽  
Bradley E. Treeby

Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for the numerical solution of the wave equation, including biomedical ultrasound and seismology. The use of the Fourier collocation spectral method in particular has many computational advantages. However, the use of a discrete Fourier basis is also inherently restricted to solving problems with periodic boundary conditions. Here, a family of spectral collocation methods based on the use of a sine or cosine basis is described. These retain the computational advantages of the Fourier collocation method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard) boundary conditions to be imposed. The basis function weights are computed numerically using the discrete sine and cosine transforms, which can be implemented using [Formula: see text] operations analogous to the fast Fourier transform. Practical details of how to implement spectral methods using discrete sine and cosine transforms are provided. The technique is then illustrated through the solution of the wave equation in a rectangular domain subject to different combinations of boundary conditions. The extension to boundaries with arbitrary real reflection coefficients or boundaries that are nonreflecting is also demonstrated using the weighted summation of the solutions with Dirichlet and Neumann boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document