scholarly journals Stable high-order quadrature rules with equidistant points

2009 ◽  
Vol 231 (2) ◽  
pp. 933-947 ◽  
Author(s):  
Daan Huybrechs
1970 ◽  
Vol 29 ◽  
pp. 117-125
Author(s):  
HT Rathod ◽  
RD Sathish ◽  
Md Shafiqul Islam ◽  
Arun Kumar Gali

Gauss Legendre Quadrature rules are extremely accurate and they should be considered seriously when many integrals of similar nature are to be evaluated. This paper is concerned with the derivation and computation of numerical integration rules for the three integrals: (See text for formulae) which are dependent on the zeros and the squares of the zeros of Legendre Polynomial and is quite well known in the Gaussian Quadrature theory. We have developed the necessary MATLAB programs based on symbolic maths which can compute the sampling points and the weight coefficients and are reported here upto 32 – digits accuracy and we believe that they are reported to this accuracy for the first time. The MATLAB programs appended here are based on symbolic maths. They are very sophisticated and they can compute Quadrature rules of high order, whereas one of the recent MATLAB program appearing in reference [21] can compute Gauss Legendre Quadrature rules upto order twenty, because the zeros of Legendre polynomials cannot be computed to desired accuracy by MATLAB routine roots (……..). Whereas we have used the MATLAB routine solve (……..) to find zeros of polynomials which is very efficient. This is worth noting in the present context. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 29 (2009) 117-125  DOI: http://dx.doi.org/10.3329/ganit.v29i0.8521 


Author(s):  
Lonny L. Thompson ◽  
Prapot Kunthong

A difficulty of the standard Galerkin finite element method has been the ability to accurately resolve oscillating wave solutions at higher frequencies. Many alternative methods have been developed including high-order methods, stabilized Galerkin methods, multi-scale variational methods, and other wave-based discretization methods. In this work, consistent residuals, both in the form of least-squares and gradient least-squares are linearly combined and added to the Galerkin variational Helmholtz equation to form a new generalized Galerkin least-squares method (GGLS). By allowing the stabilization parameters to vary spatially within each element, we are able to select optimal parameters which reduce dispersion error for all wave directions from second-order to fourth-order in nondimensional wavenumber; a substantial improvement over standard Galerkin elements. Furthermore, the stabilization parameters are frequency independent, and thus can be used for both time-harmonic solutions to the Helmholtz equation as well as direct time-integration of the wave equation, and eigenfrequency/eigenmodes analysis. Since the variational framework preserves consistency, high-order accuracy is maintained in the presence of source terms. In the case of homogeneous source terms, we show that our consistent variational framework is equivalent to integrating the underlying stiffness and mass matrices with optimally selected numerical quadrature rules. Optimal GGLS stabilization parameters and equivalent quadrature rules are determined for several element types including: bilinear quadrilateral, linear triangle, and linear tetrahedral elements. Numerical examples on unstructured meshes validate the expected high-order accuracy.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Samet Erden ◽  
Mehmet Zeki Sarikaya

AbstractWe firstly establish inequalities for functions whose high degree derivatives are convex via an equality which was presented previously. Then we derive inequalities for functions whose high-order derivatives are absolutely continuous by using the same equality. In addition, we examine connections between inequalities obtained in earlier works and our results. Finally, some estimates of composite quadrature rules are given.


2017 ◽  
Vol 10 (2) ◽  
pp. 331-350 ◽  
Author(s):  
Tao Cui ◽  
Wei Leng ◽  
Deng Lin ◽  
Shichao Ma ◽  
Linbo Zhang

AbstractThis paper is concerned with the construction of high order mass-lumping finite elements on simplexes and a program for computing mass-lumping finite elements on triangles and tetrahedra. The polynomial spaces for mass-lumping finite elements, as proposed in the literature, are presented and discussed. In particular, the unisolvence problem of symmetric point-sets for the polynomial spaces used in mass-lumping elements is addressed, and an interesting property of the unisolvent symmetric point-sets is observed and discussed. Though its theoretical proof is still lacking, this property seems to be true in general, and it can greatly reduce the number of cases to consider in the computations of mass-lumping elements. A program for computing mass-lumping finite elements on triangles and tetrahedra, derived from the code for computing numerical quadrature rules presented in [7], is introduced. New mass-lumping finite elements on triangles found using this program with higher orders, namely 7, 8 and 9, than those available in the literature are reported.


1997 ◽  
Vol 34 (4) ◽  
pp. 1418-1431 ◽  
Author(s):  
Fu-Rong Lin ◽  
Michael K. Ng ◽  
Raymond H. Chan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document