scholarly journals An optimal time-stepping algorithm for unsteady advection–diffusion problems

2016 ◽  
Vol 294 ◽  
pp. 57-77 ◽  
Author(s):  
Naresh M. Chadha ◽  
Niall Madden
2018 ◽  
Vol 18 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Yan Yang ◽  
Yubin Yan ◽  
Neville J. Ford

AbstractWe consider error estimates for some time stepping methods for solving fractional diffusion problems with nonsmooth data in both homogeneous and inhomogeneous cases. McLean and Mustapha [18] established an {O(k)} convergence rate for the piecewise constant discontinuous Galerkin method with nonsmooth initial data for the homogeneous problem when the linear operator A is assumed to be self-adjoint, positive semidefinite and densely defined in a suitable Hilbert space, where k denotes the time step size. In this paper, we approximate the Riemann–Liouville fractional derivative by Diethelm’s method (or L1 scheme) and obtain the same time discretisation scheme as in McLean and Mustapha [18]. We first prove that this scheme has also convergence rate {O(k)} with nonsmooth initial data for the homogeneous problem when A is a closed, densely defined linear operator satisfying some certain resolvent estimates. We then introduce a new time discretisation scheme for the homogeneous problem based on the convolution quadrature and prove that the convergence rate of this new scheme is {O(k^{1+\alpha})}, {0<\alpha<1}, with the nonsmooth initial data. Using this new time discretisation scheme for the homogeneous problem, we define a time stepping method for the inhomogeneous problem and prove that the convergence rate of this method is {O(k^{1+\alpha})}, {0<\alpha<1}, with the nonsmooth data. Numerical examples are given to show that the numerical results are consistent with the theoretical results.


CFD letters ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 58-65
Author(s):  
Hazim Fadli Aminnuddin ◽  
Farzad Ismail ◽  
Akmal Nizam Mohamed ◽  
Kamil Abdullah

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Heng Cheng ◽  
Guodong Zheng

In this paper, the improved element-free Galerkin (IEFG) method is used for solving 3D advection-diffusion problems. The improved moving least-squares (IMLS) approximation is used to form the trial function, the penalty method is applied to introduce the essential boundary conditions, the Galerkin weak form and the difference method are used to obtain the final discretized equations, and then the formulae of the IEFG method for 3D advection-diffusion problems are presented. The error and the convergence are analyzed by numerical examples, and the numerical results show that the IEFG method not only has a higher computational speed but also can avoid singular matrix of the element-free Galerkin (EFG) method.


Sign in / Sign up

Export Citation Format

Share Document