A hybridizable discontinuous Galerkin Generalized Multiscale Finite element method for highly heterogeneous linear elasticity problems

2021 ◽  
Vol 383 ◽  
pp. 113124
Author(s):  
Weijun Ma ◽  
Shubin Fu
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Buck ◽  
Oleg Iliev ◽  
Heiko Andrä

AbstractWe extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.


2016 ◽  
Vol 16 (3) ◽  
pp. 389-408 ◽  
Author(s):  
Gang Chen ◽  
Xiaoping Xie

AbstractThis paper proposes and analyzes a weak Galerkin (WG) finite element method with strong symmetric stresses for two- and three-dimensional linear elasticity problems on conforming or nonconforming polygon/polyhedral meshes. The WG method uses piecewise-polynomial approximations of degreesk(${\geq 1}$) for the stress,${k+1}$for the displacement, andkfor the displacement trace on the inter-element boundaries. It is shown to be equivalent to a hybridizable discontinuous Galerkin (HDG) finite element scheme. We show that the WG methods are robust in the sense that the derived a priori error estimates are optimal and uniform with respect to the Lamé constant λ. Numerical experiments confirm the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1382
Author(s):  
Denis Spiridonov ◽  
Maria Vasilyeva ◽  
Aleksei Tyrylgin ◽  
Eric T. Chung

In this paper, we present a multiscale model reduction technique for unsaturated filtration problem in fractured porous media using an Online Generalized Multiscale finite element method. The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures. This approach leads to systems with a large number of unknowns, which require large computational costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving such problems on a very coarse grid using basis functions that can capture heterogeneities. In the GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces and solve local spectral problems to obtain multiscale basis functions. These spectral problems are defined in the snapshot space in each local domain. To improve the accuracy of the method, we add online basis functions in the online stage. The construction of the online basis functions is based on the local residuals. The use of online bases will allow us to get a significant improvement in the accuracy of the method. We present results with different number of offline and online multisacle basis functions. We compare all results with reference solution. Our results show that the proposed method is able to achieve high accuracy with a small computational cost.


Sign in / Sign up

Export Citation Format

Share Document