A Robust Weak Galerkin Finite Element Method for Linear Elasticity with Strong Symmetric Stresses

2016 ◽  
Vol 16 (3) ◽  
pp. 389-408 ◽  
Author(s):  
Gang Chen ◽  
Xiaoping Xie

AbstractThis paper proposes and analyzes a weak Galerkin (WG) finite element method with strong symmetric stresses for two- and three-dimensional linear elasticity problems on conforming or nonconforming polygon/polyhedral meshes. The WG method uses piecewise-polynomial approximations of degreesk(${\geq 1}$) for the stress,${k+1}$for the displacement, andkfor the displacement trace on the inter-element boundaries. It is shown to be equivalent to a hybridizable discontinuous Galerkin (HDG) finite element scheme. We show that the WG methods are robust in the sense that the derived a priori error estimates are optimal and uniform with respect to the Lamé constant λ. Numerical experiments confirm the theoretical results.

Author(s):  
Olivier A. Bauchau ◽  
Minghe Shan

Abstract The application of the finite element method to the modeling of Cosserat solids is investigated in detail. In two- and three-dimensional elasticity problems, the nodal unknowns are the components of the displacement vector, which form a linear field. In contrast, when dealing with Cosserat solids, the nodal unknowns form the special Euclidean group SE(3), a nonlinear manifold. This observation has numerous implications on the implementation of the finite element method and raises numerous questions: (1) What is the most suitable representation of this nonlinear manifold? (2) How is it interpolated over one element? (3) How is the associated strain field interpolated? (4) What is the most efficient way to obtain the discrete equations of motion? All these questions are, of course intertwined. This paper shows that reliable schemes are available for the interpolation of the motion and curvature fields. The interpolated fields depend on relative nodal motions only, and hence, are both objective and tensorial. Because these schemes depend on relative nodal motions only, only local parameterization is required, thereby avoiding the occurrence of singularities. For Cosserat solids, it is preferable to perform the discretization operation first, followed by the variation operation. This approach leads to considerable computation efficiency and simplicity.


2020 ◽  
Vol 28 (2) ◽  
pp. 75-98 ◽  
Author(s):  
Boniface Nkemzi ◽  
Michael Jung

AbstractIn [Nkemzi and Jung, 2013] explicit extraction formulas for the computation of the edge flux intensity functions for the Laplacian at axisymmetric edges are presented. The present paper proposes a new adaptation for the Fourier-finite-element method for efficient numerical treatment of boundary value problems for the Poisson equation in axisymmetric domains Ω̂ ⊂ ℝ3 with edges. The novelty of the method is the use of the explicit extraction formulas for the edge flux intensity functions to define a postprocessing procedure of the finite element solutions of the reduced boundary value problems on the two-dimensional meridian of Ω̂. A priori error estimates show that the postprocessing finite element strategy exhibits optimal rate of convergence on regular meshes. Numerical experiments that validate the theoretical results are presented.


2018 ◽  
Vol 18 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Sharat Gaddam ◽  
Thirupathi Gudi

AbstractAn optimally convergent (with respect to the regularity) quadratic finite element method for the two-dimensional obstacle problem on simplicial meshes is studied in [14]. There was no analogue of a quadratic finite element method on tetrahedron meshes for the three-dimensional obstacle problem. In this article, a quadratic finite element enriched with element-wise bubble functions is proposed for the three-dimensional elliptic obstacle problem. A priori error estimates are derived to show the optimal convergence of the method with respect to the regularity. Further, a posteriori error estimates are derived to design an adaptive mesh refinement algorithm. A numerical experiment illustrating the theoretical result on a priori error estimates is presented.


Sign in / Sign up

Export Citation Format

Share Document