scholarly journals Extension of a second order velocity slip/temperature jump boundary condition to simulate high speed micro/nanoflows

2014 ◽  
Vol 67 (11) ◽  
pp. 2029-2040 ◽  
Author(s):  
Seyed Ali Rooholghdos ◽  
Ehsan Roohi
Author(s):  
H. D. Madhawa Hettiarachchi ◽  
Mihajlo Golubovic ◽  
William M. Worek

Slip-flow and heat transfer in rectangular microchannels are studied numerically for constant wall temperature (T) and constant wall heat flux (H2) boundary conditions under thermally developing flow. Navier-Stokes and energy equations with velocity slip and temperature jump at the boundary are solved using finite volume method in a three dimensional cartesian coordinate system. A modified convection-diffusion coefficient at the wall-fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is stabilized. The effect of rarefaction on heat transfer in the entrance region is analyzed in detail. The velocity slip has an increasing effect on the Nusselt (Nu) number whereas temperature jump has a decreasing effect, and the combined effect could result increase or decrease in the Nu number. For the range of parameters considered, there could be high as 15% increase or low as 50% decrease in fully developed Nu is plausible for T thermal boundary condition while it could be high as 20% or low as 35% for H2 thermal boundary condition.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiahui Cao ◽  
Jing Zhu ◽  
Xinhui Si ◽  
Botong Li

Abstract Steady forced convection of non-Newtonian nanofluids around a confined semi-circular cylinder subjected to a uniform magnetic field is carried out using ANSYS FLUENT. The numerical solution is obtained using the finite volume method. The user-defined scalar (UDS) is used for the first time to calculate the second order velocity slip boundary condition in semi-circular curved surface and the calculated results are compared with those of the first order velocity slip boundary condition. Besides, the effects of volume fraction, size, type of nanoparticles and magnetic field strength on heat transfer are studied. The present study displays that adding nanoparticles in non-Newtonian fluids significantly enhances heat transfer. In addition, it is observed that the heat transfer rate decreases first and then increases with the increase of Hartmann number. The effects of blocking rate on Nusselt number, wake length and heat transfer effect are shown in the form of graphs or tables.


Author(s):  
Nian Xiao ◽  
John Elsnab ◽  
Susan Thomas ◽  
Tim Ameel

Two analytical models are presented in which the continuum momentum and energy equations, coupled with second-order slip flow and temperature jump boundary conditions, are solved. An isothermal boundary condition is applied to a microchannel with a circular cross section. The flow is assumed to be hydrodynamically fully developed and thermal field is either fully developed or thermally developing from the tube entrance. A traditional first-order slip boundary condition is found to over predict the slip velocity compared to the second-order model. Heat transfer increases at the upper limit of the slip regime for the second-order model. The maximum second-order correction to the first-order Nusselt number is on the order of 18% for air. The second-order effect is also more significant in the entrance region of the tube. The Nusselt number decreases relative to the no-slip value when slip and temperature jump effects are of the same order or when temperature jump effects dominate. When temperature jump effects are small, the Nusselt number increases relative to the no-slip value. Comparisons to a previously reported model for an isoflux boundary condition indicate that the Nusselt number for the isoflux boundary condition exceeds that for the isothermal case at all axial locations.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
M. A. Hamdan ◽  
M. A. Al-Nimr ◽  
Vladimir A. Hammoudeh

In this work, the effect of the second-order term to the velocity-slip/temperature-jump boundary conditions on the solution of four cases in which the driving force is fluctuating harmonically was studied. The study aims to establish criteria that secure the use of the first order velocity-slip/temperature-jump model boundary conditions instead of the second-order ones. The four cases studied were the transient Couette flow, the pulsating Poiseuille flow, Stoke’s second problem, and the transient natural convection flow. It was found that at any given Kn number, increasing the driving force frequency, increases the difference between the first and second-order models. Assuming that a difference between the two models of over 5% is significant enough to justify the use of the more complex second-order model, the critical frequencies for the four different cases were found. For the cases for which the flow is induced by the fluctuating wall as in cases 1 and 3, we found that critical frequency at Kn=0.1 to be ω=8. For the cases of flow driven by a fluctuating pressure gradient as in case 2, this frequency was found to be ω=1, at the same Kn number. In case 4, for the temperature-jump model, the critical frequency was found to be ω=7 and for the velocity-slip model the critical frequency at the same Kn number was found to be ω=1.35.


Sign in / Sign up

Export Citation Format

Share Document