Direct comparison of the electrical, optical, and structural phase transitions of VO2 on ZnO nanostructures

Author(s):  
In-Hui Hwang ◽  
Youngdo Park ◽  
Jai-Min Choi ◽  
Sang-Wook Han
1991 ◽  
Vol 185-189 ◽  
pp. 895-896 ◽  
Author(s):  
S. Sugai ◽  
S. Hosoya ◽  
T. Kajitani ◽  
T. Fukuda ◽  
S. Onodera

2021 ◽  
Vol 26 ◽  
pp. 102048
Author(s):  
Craig A.J. Fisher ◽  
Ayako Taguchi ◽  
Takafumi Ogawa ◽  
Akihide Kuwabara

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Đorđe Dangić ◽  
Olle Hellman ◽  
Stephen Fahy ◽  
Ivana Savić

AbstractThe proximity to structural phase transitions in IV-VI thermoelectric materials is one of the main reasons for their large phonon anharmonicity and intrinsically low lattice thermal conductivity κ. However, the κ of GeTe increases at the ferroelectric phase transition near 700 K. Using first-principles calculations with the temperature dependent effective potential method, we show that this rise in κ is the consequence of negative thermal expansion in the rhombohedral phase and increase in the phonon lifetimes in the high-symmetry phase. Strong anharmonicity near the phase transition induces non-Lorentzian shapes of the phonon power spectra. To account for these effects, we implement a method of calculating κ based on the Green-Kubo approach and find that the Boltzmann transport equation underestimates κ near the phase transition. Our findings elucidate the influence of structural phase transitions on κ and provide guidance for design of better thermoelectric materials.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2021 ◽  
pp. 159346
Author(s):  
Hyun-Woo Bang ◽  
Woosuk Yoo ◽  
Kyujoon Lee ◽  
Young Haeng Lee ◽  
Myung-Hwa Jung

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Grant W. Howieson ◽  
Karuna K. Mishra ◽  
Alexandra S. Gibbs ◽  
Ram S. Katiyar ◽  
James F. Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document