Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells

Carbon ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Daping He ◽  
Shichun Mu ◽  
Mu Pan
Author(s):  
Wei Shi ◽  
Sang-Joon Lee

Miniature and micro fuel cells continue to advance as promising alternatives for efficient and portable electric power. This paper presents a study of experimental modifications to the exit flow configuration of microchannels used in small proton-exchange-membrane fuel cells. New concepts for exit geometry are presented, which promote effective water removal and provide reactant back-pressure in an efficient and self-contained manner. Cell assembly is designed such that reactants must necessarily flow laterally through the gas diffusion electrodes near the exit, rather than simply pass over the free backside surfaces of these electrodes. Multiple prototypes were produced using microfabrication techniques with channel sizes of 100 and 200 microns, and performance was tested using a hydrogen-air test station with programmable electronic load. One of the new concepts in particular showed a marked improvement from 28 mW/cm2 peak power density under baseline conditions to 37 mW/cm2 for the modified design under similar operating conditions. The design offers an opportunity for higher performance in miniature fuel cells with low gas consumption and no additional cost.


RSC Advances ◽  
2019 ◽  
Vol 9 (17) ◽  
pp. 9594-9603 ◽  
Author(s):  
Cong Feng ◽  
Yan Li ◽  
Kunnan Qu ◽  
Zhiming Zhang ◽  
Pengfei He

Perfluorosulfonic acid (PFSA) is widely used as the membrane material for proton-exchange membrane fuel cells, and its mechanical properties directly affect the stability and the life of the internal structure of the proton exchange membrane.


2020 ◽  
Vol 4 (11) ◽  
pp. 5739-5746
Author(s):  
Panagiotis Trogadas ◽  
Jason I. S. Cho ◽  
Nidhi Kapil ◽  
Lara Rasha ◽  
Albert Corredera ◽  
...  

The detrimental effect of extended short-circuiting in the degradation of catalyst layer and performance of proton exchange membrane fuel cells.


Sign in / Sign up

Export Citation Format

Share Document