scholarly journals Role of nanostructured aggregation of chitosan derivatives on [5-methionine]enkephalin affinity

2017 ◽  
Vol 157 ◽  
pp. 321-324 ◽  
Author(s):  
Federica Aiello ◽  
Federica Balzano ◽  
Luca Carpita ◽  
Angela Fabiano ◽  
Ylenia Zambito ◽  
...  
1980 ◽  
Vol 59 (s6) ◽  
pp. 235s-237s ◽  
Author(s):  
R. W. Rockhold ◽  
J. T. Crofton ◽  
L. Share

1. The cardiovascular effects of an enkephalin analogue were examined in spontaneously hypertensive and normotensive Wistar-Kyoto rats. (D-Ala2)-methionine enkephalin caused a biphasic increase in blood pressure and an increase in heart rate after intracerebroventricular injection. 2. The initial pressor response to (D-Ala2)-methionine enkephalin was greater in hypertensive than in normotensive rats. No difference was noted between groups during the secondary pressor response. Heart rate increases paralleled the secondary increase in blood pressure. 3. Naloxone pretreatment abolished the secondary increase in blood pressure and the tachycardia, but did not blunt the initial pressor response in female Wistar-Kyoto rats. 4. Plasma levels of arginine vasopressin were depressed during the plateau phase of the pressor response in hypertensive rats given intracerebroventricular (d-Ala2)-methionine enkephalin. 5. The results suggest that the cardiovascular effects of central enkephalin are not due to vasopressin, but may involve activation of the sympathetic nervous system.


2011 ◽  
Vol 121 (2) ◽  
pp. 815-822 ◽  
Author(s):  
Douglas de Britto ◽  
Sergio Paulo Campana Filho ◽  
Odilio B. G. Assis

1998 ◽  
Vol 275 (3) ◽  
pp. H861-H867 ◽  
Author(s):  
William M. Armstead

Because methionine enkephalin contributes to and dynorphin opposes dilation during a 10-min hypoxic exposure, opioids modulate pial artery dilation to this stimulus. However, such modulation may be dependent on the duration of hypoxia. The present study was designed to characterize the modulation of hypoxic pial dilation by opioids as a function of stimulus duration in newborn pigs equipped with a closed cranial window. Hypoxic dilation was decremented in both moderate and severe groups ([Formula: see text] ≈ 35 and 25 mmHg, respectively) during 20-min and 40-min exposure periods compared with the response during 5 or 10 min of stimulation (24 ± 1, 25 ± 1, 18 ± 1, and 14 ± 1% for 5, 10, 20, and 40 min of moderate hypoxia; means ± SE). Moderate and severe hypoxia had no effect on cerebral spinal fluid (CSF) methionine enkephalin or dynorphin concentration during a 5-min exposure period. During a 10-min exposure, however, both opioids were increased in CSF. During 20- and 40-min exposure periods, CSF dynorphin continued to increase, whereas methionine enkephalin steadily decreased (962 ± 18, 952 ± 21, 2,821 ± 15, 2,000 ± 81, and 1,726 ± 58 pg/ml methionine enkephalin for control, 5, 10, 20, and 40 min of moderate hypoxia, respectively). The μ-opioid (methionine enkephalin) antagonist β-funaltrexamine had no influence on dilation during the 5-min exposure, decremented the 10- and 20-min exposures, but had no effect on 40-min exposure hypoxic dilation. Whereas the κ-opioid (dynorphin) antagonist norbinaltorphimine similarly had no effect on a 5-min exposure dilation, it, in contrast, potentiated 10-, 20-, and 40-min exposure hypoxic dilations (23 ± 1 vs. 23 ± 1, 24 ± 1 vs. 32 ± 1, 16 ± 1 vs. 24 ± 2, and 13 ± 1 vs. 23 ± 3% for 5, 10, 20, and 40-min hypoxic dilation before and after norbinaltorphimine). These data show that opioids do not modulate hypoxic pial dilation during short but do so during longer exposure periods. Moreover, hypoxic pial dilation is diminished during longer exposure periods. Decremented hypoxic pial dilation during longer exposure periods results, at least in part, from decreased release of methionine enkephalin and accentuated release of dynorphin. These data suggest that the relative role of opioids in hypoxic pial dilation changes with the stimulus duration.


2020 ◽  
Vol 882 ◽  
pp. 173253
Author(s):  
Yali Tuo ◽  
Cheng Tian ◽  
Lili Lu ◽  
Ming Xiang

2021 ◽  
Vol 22 (14) ◽  
pp. 7449
Author(s):  
Cristina Ardean ◽  
Corneliu Mircea Davidescu ◽  
Nicoleta Sorina Nemeş ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
...  

The biomedical and therapeutic importance of chitosan and chitosan derivatives is the subject of interdisciplinary research. In this analysis, we intended to consolidate some of the recent discoveries regarding the potential of chitosan and its derivatives to be used for biomedical and other purposes. Why chitosan? Because chitosan is a natural biopolymer that can be obtained from one of the most abundant polysaccharides in nature, which is chitin. Compared to other biopolymers, chitosan presents some advantages, such as accessibility, biocompatibility, biodegradability, and no toxicity, expressing significant antibacterial potential. In addition, through chemical processes, a high number of chitosan derivatives can be obtained with many possibilities for use. The presence of several types of functional groups in the structure of the polymer and the fact that it has cationic properties are determinant for the increased reactive properties of chitosan. We analyzed the intrinsic properties of chitosan in relation to its source: the molecular mass, the degree of deacetylation, and polymerization. We also studied the most important extrinsic factors responsible for different properties of chitosan, such as the type of bacteria on which chitosan is active. In addition, some chitosan derivatives obtained by functionalization and some complexes formed by chitosan with various metallic ions were studied. The present research can be extended in order to analyze many other factors than those mentioned. Further in this paper were discussed the most important factors that influence the antibacterial effect of chitosan and its derivatives. The aim was to demonstrate that the bactericidal effect of chitosan depends on a number of very complex factors, their knowledge being essential to explain the role of each of them for the bactericidal activity of this biopolymer.


2016 ◽  
Vol 91 ◽  
pp. 457-464 ◽  
Author(s):  
Alexander Pestov ◽  
Alexander Nazirov ◽  
Yuliya Privar ◽  
Evgeny Modin ◽  
Svetlana Bratskaya

Cephalalgia ◽  
1985 ◽  
Vol 5 (3_suppl) ◽  
pp. 38-39
Author(s):  
Yuichi Maruki ◽  
Kunio Shimazu ◽  
Masaaki Matsuzaki ◽  
Takeshi Ohkubo ◽  
Hideyoshi Sugimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document