Structural elucidation of the main water-soluble polysaccharide from Rubus anatolicus roots

2017 ◽  
Vol 175 ◽  
pp. 610-617 ◽  
Author(s):  
Neda Sahragard ◽  
Kambiz Jahanbin
2013 ◽  
Vol 138 (2-3) ◽  
pp. 1470-1475 ◽  
Author(s):  
Hongtao Bi ◽  
Tingting Gao ◽  
Zonghong Li ◽  
Li Ji ◽  
Wei Yang ◽  
...  

2020 ◽  
Author(s):  
MSM Wee ◽  
Ian Sims ◽  
KKT Goh ◽  
L Matia-Merino

© 2019 Elsevier Ltd A water-soluble polysaccharide (type II arabinogalactan-protein) extracted from the gum exudate of the native New Zealand puka tree (Meryta sinclairii), was characterised for its molecular, rheological and physicochemical properties. In 0.1 M NaCl, the weight average molecular weight (Mw) of puka gum is 5.9 × 106 Da with an RMS radius of 56 nm and z-average hydrodynamic radius of 79 nm. The intrinsic viscosity of the polysaccharide is 57 ml/g with a coil overlap concentration 15% w/w. Together, the shape factor, p, of 0.70 (exponent of RMS radius vs. hydrodynamic radius), Smidsrød-Haug's stiffness parameter B of 0.031 and Mark-Houwink exponent α of 0.375 indicate that the polysaccharide adopts a spherical conformation in solution, similar to gum arabic. The pKa is 1.8. The polysaccharide exhibits a Newtonian to shear-thinning behaviour from 0.2 to 25% w/w. Viscosity of the polysaccharide (1 s−1) decreases with decreasing concentration, increasing temperature, ionic strength, and at acidic pH.


1961 ◽  
Vol 39 (2) ◽  
pp. 375-381 ◽  
Author(s):  
C. V. N. Rao ◽  
D. Choudhury ◽  
P. Bagchi

A water-soluble polysaccharide isolated from the kernel of coconut (Cocos nucifera) had [α]D −85° and contained D-galactose (1 mole) and D-mannose (2 moles). Methylation and hydrolysis yielded 2,3,4,6-tetra-O-methyl-D-mannose (0.51 mole); 2,3,4,6-tetra-O-methyl-D-galactose (0.5 mole); 2,3,6-tri-O-methyl-D-mannose (5.52 moles); 2,3,6-tri-O-methyl-D-galactose (1.51 moles); and a di-O-methyl-D-galactose (1 mole). These data agree with those of periodate oxidation. The structural significance of these results is discussed.


2001 ◽  
Vol 68 (4) ◽  
pp. 653-661 ◽  
Author(s):  
PABLO SEBASTIÁN RIMADA ◽  
ANALÍA GRACIELA ABRAHAM

Fermentation of deproteinised whey with kefir grains CIDCA AGK1 was studied focusing on polysaccharide production from lactose. Kefir grains were able to acidify whey at different rates depending on the grain/whey ratio. During fermentation, kefir grains increased their weight and a water-soluble polysaccharide was released to the media. Exopolysaccharide concentration increased with fermentation time, reaching values of 57·2 and 103·4 mg/l after 5 days of fermentation in cultures with 10 and 100 g kefir grains/l, respectively. The polysaccharide fraction quantified after fermentation corresponded to the soluble fraction, because part of the polysaccharide became a component of the grain. Weight of kefir grains varied depending on the time of fermentation. Polysaccharide production was affected by temperature. Although the highest concentration of polysaccharide in the media was observed at 43 °C at both grain/whey ratios, the weight of the grains decreased in these conditions. In conclusion, kefir grains were able to acidify deproteinised whey, reducing lactose concentration, increasing their weight and producing a soluble polysaccharide.


Sign in / Sign up

Export Citation Format

Share Document