Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing

2021 ◽  
Vol 253 ◽  
pp. 117217
Author(s):  
Tao Ma ◽  
Linxiang Lv ◽  
Chengzheng Ouyang ◽  
Xinna Hu ◽  
Xiaojun Liao ◽  
...  
2019 ◽  
Vol 28 ◽  
pp. 50-57 ◽  
Author(s):  
Edwin-Joffrey Courtial ◽  
Clément Perrinet ◽  
Arthur Colly ◽  
David Mariot ◽  
Jean-Marc Frances ◽  
...  

2018 ◽  
Vol 62 (2) ◽  
pp. 607-618 ◽  
Author(s):  
Quentin Beuguel ◽  
Jason R. Tavares ◽  
Pierre J. Carreau ◽  
Marie-Claude Heuzey

2021 ◽  
Vol 11 (15) ◽  
pp. 6835
Author(s):  
Sang-U Bae ◽  
Birm-June Kim

Photopolymer composites filled with cellulose nanocrystal (CNC) and/or inorganic nanofillers were fabricated by using digital light processing (DLP) 3D printing. To investigate the effects of different CNC lyophilization concentrations and behaviors of CNC particles in the photopolymer composites, morphological and mechanical properties were analyzed. CNC loading levels affected the morphological and mechanical properties of the filled composites. Better CNC dispersion was seen at a lower lyophilization concentration, and the highest mechanical strength was observed in the 0.25 wt% CNC-filled composite. Furthermore, nano-precipitated calcium carbonate (nano-PCC) and nanoclay were added to photocurable resins, and then the effect of inorganic nanofillers on the morphological and mechanical properties of the composites were evaluated. By analyzing the morphological properties, the stress transfer mechanism of nano-PCC and nanoclay in the photopolymer composites was identified and related models were presented. These supported the improved mechanical strength of the composites filled with CNC, nano-PCC, and nanoclay. This study suggested a new approach using wood-derived cellulose nanomaterials and inorganic nanofillers as effective fillers for DLP 3D printing.


Sign in / Sign up

Export Citation Format

Share Document