scholarly journals OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production

2006 ◽  
Vol 69 (4) ◽  
pp. 855-864 ◽  
Author(s):  
I FEARON
2008 ◽  
Vol 28 (7) ◽  
pp. 2304-2313 ◽  
Author(s):  
Andrey V. Kuznetsov ◽  
Julija Smigelskaite ◽  
Christine Doblander ◽  
Manickam Janakiraman ◽  
Martin Hermann ◽  
...  

ABSTRACT Survival signaling by RAF occurs through largely unknown mechanisms. Here we provide evidence for the first time that RAF controls cell survival by maintaining permissive levels of mitochondrial reactive oxygen species (ROS) and Ca2+. Interleukin-3 (IL-3) withdrawal from 32D cells resulted in ROS production, which was suppressed by activated C-RAF. Oncogenic C-RAF decreased the percentage of apoptotic cells following treatment with staurosporine or the oxidative stress-inducing agent tert-butyl hydroperoxide. However, it was also the case that in parental 32D cells growing in the presence of IL-3, inhibition of RAF signaling resulted in elevated mitochondrial ROS and Ca2+ levels. Cell death is preceded by a ROS-dependent increase in mitochondrial Ca2+, which was absent from cells expressing transforming C-RAF. Prevention of mitochondrial Ca2+ overload after IL-3 deprivation increased cell viability. MEK was essential for the mitochondrial effects of RAF. In summary, our data show that survival control by C-RAF involves controlling ROS production, which otherwise perturbs mitochondrial Ca2+ homeostasis.


Author(s):  
Ahmed Karoui ◽  
Clément Crochemore ◽  
Najah Harouki ◽  
Cécile Corbière ◽  
David Preterre ◽  
...  

Traffic air pollution is a major health problem and is recognized as an important risk factor for cardiovascular (CV) diseases. In a previous experimental study, we showed that diesel exhaust (DE) exposures induced cardiac mitochondrial and CV dysfunctions associated with the gaseous phase. Here, we hypothesized that NO2 exposures to levels close to those found in DE induce a mitochondrial reactive oxygen species (ROS) production, which contribute to an endothelial dysfunction, an early indicator for numerous CV diseases. For this, we studied the effects of NO2 on ROS production and its impacts on the mitochondrial, coronary endothelial and cardiac functions, after acute (one single exposure) and repeated (three h/day, five days/week for three weeks) exposures in Wistar rats. Acute NO2 exposure induced an early but reversible mitochondrial ROS production. This event was isolated since neither mitochondrial function nor endothelial function were impaired, whereas cardiac function assessment showed a reversible left ventricular dysfunction. Conversely, after three weeks of exposure this alteration was accompanied by a cardiac mitochondrial dysfunction highlighted by an alteration of adenosine triphosphate (ATP) synthesis and oxidative phosphorylation and an increase in mitochondrial ROS production. Moreover, repeated NO2 exposures promoted endothelial dysfunction of the coronary arteries, as shown by reduced acetylcholine-induced vasodilatation, which was due, at least partially, to a superoxide-dependent decrease of nitric oxide (NO) bioavailability. This study shows that NO2 exposures impair cardiac mitochondrial function, which, in conjunction with coronary endothelial dysfunction, contributes to cardiac dysfunction. Together, these results clearly identify NO2 as a probable risk factor in ischemic heart diseases.


Sign in / Sign up

Export Citation Format

Share Document