Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio

CATENA ◽  
2012 ◽  
Vol 90 ◽  
pp. 47-52 ◽  
Author(s):  
Mengistu B. Defersha ◽  
Assefa M. Melesse
1997 ◽  
Vol 6 (2) ◽  
pp. 113-147 ◽  
Author(s):  
D. A. Steffy ◽  
D. A. Barry ◽  
C. D. Johnston

2015 ◽  
Vol 3 (2) ◽  
pp. 1575-1613 ◽  
Author(s):  
M. R. Hakro ◽  
I. S. H. Harahap

Abstract. During or immediately after rainfall many slope failures have been observed. The slope failure occurred due to rainfall infiltration that rapidly increase the pore pressure and trigger the slope failure. Numerous studies have been conducted to investigate the rainfall-induced slope failure, but the mechanism of slope failure is still not well clarified. To investigate mechanism of rainfall-induced slope failure laboratory experiments have been conducted in flume. The slope was prepared with sandy soil in flume with constant inclination of 45°, because most of rainfall-induced slope failure occurred in sandy soil and on steep slope. The hydrological parameters such as pore pressure and moisture content were measured with piezometers and advanced Imko TDRs respectively. The slope failure occurred due to increase in moisture content and rise in pore pressure. During the flowslide type of slope failure the sudden increase in pore pressure was observed. The higher moisture content and pore pressure was at the toe of the slope. The pore pressure was higher at the toe of the slope and smaller at the upper part of the slope. After the saturation the run-off was observed at the toe of the slope that erodes the toe and forming the gullies from toe to upper part of the slope. In the case antecedent moisture conditions the moisture content and the pore pressure increased quickly and producing the surface runoff at the horizontal part of the slope. The slope having less density suffer from flowslide type of the failure, however in dense slope no major failure was occurred even at higher rainfall intensity. The antecedent moisture accompanied with high rainfall intensity also not favors the initiation of flowslide in case of dense slope. The flowslide type of failure can be avoided by controlling the density of soil slope. Knowing such parameters that controls the large mass movement helpful in developing the early warning system for flowslide type of failure.


2010 ◽  
Vol 7 (4) ◽  
pp. 6447-6489 ◽  
Author(s):  
M. B. Defersha ◽  
S. Quraishi ◽  
A. Melesse

Abstract. Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by erosive agents such as flowing water. The rate at which erosion occurs depends upon the individual as well as interactive effects of different parameters responsible for soil erosion. The study discusses results of a laboratory analysis and evaluates the effect of slope steepness and antecedent moisture content on sediment yield (wash) and runoff rate. Interrill sediment yield, splash detachment, runoff, and sediment size distribution were measured in laboratory erosion pans under simulated total duration of 90 min. Rainfall intensity at 120 mm/hr, 70 mm/hr, and 55 mm/hr were applied sequentially at 9, 25, and 45% slope steepness for three soils (Alemaya Black soil, Regosols, and Cambisols) varied from clay to sandy clay loam in texture with wet and dry antecedent water contents. As slope steepness increased from 9 to 25% splash increased for five treatments and decreased for the remaining treatment; washed sediment increased for all treatments. As slope increased from 25 to 45% splash decreased for five treatments but increased for one treatment, and washed sediment increased for three treatments but decreased for the other three treatments. Pre-wetting decreased splash detachment for all soil treatments and rate of reduction was high for the highly aggregated soil, Alemaya Black soil and low for the less aggregated soil Regosols. Splash sediment and sediment yield was not correlated. Change in splash with increase in slope steepness was also not correlated with change in sediment yield. Change in runoff rate with increase in slope steepness was correlated (r=0.66) with change in sediment yield. For Alemaya Black soil and Regosols, splashed sediment size distribution was correlated with washed sediment size distribution. Interrill erosion models that include runoff and rainfall intensity parameters were a better fit for these data than the rainfall intensity based model. The exponent term, b, values in (E=a Ib) model did not approach 2.00 for all treatments. For the same slope steepness factor, both rainfall and rainfall-runoff based models provided different erodibility coefficients at different levels of slope and moisture contents.


2008 ◽  
Vol 12 (2) ◽  
pp. 523-535 ◽  
Author(s):  
M. López-Vicente ◽  
A. Navas ◽  
J. Machín

Abstract. The Mediterranean environment is characterized by strong temporal variations in rainfall volume and intensity, soil moisture and vegetation cover along the year. These factors play a key role on soil erosion. The aim of this work is to identify different erosive periods in function of the temporal changes in rainfall and runoff characteristics (erosivity, maximum intensity and number of erosive events), soil properties (soil erodibility in relation to freeze-thaw processes and soil moisture content) and current tillage practices in a set of agricultural fields in a mountainous area of the Central Pyrenees in NE Spain. To this purpose the rainfall and runoff erosivity (R), the soil erodibility (K) and the cover-management (C) factors of the empirical RUSLE soil loss model were used. The R, K and C factors were calculated at monthly scale. The first erosive period extends from July to October and presents the highest values of erosivity (87.8 MJ mm ha−1 h−1), maximum rainfall intensity (22.3 mm h−1) and monthly soil erosion (0.25 Mg ha−1 month−1) with the minimum values of duration of erosive storms, freeze-thaw cycles, soil moisture content and soil erodibility (0.007 Mg h MJ−1 mm−1). This period includes the harvesting and the plowing tillage practices. The second erosive period has a duration of two months, from May to June, and presents the lowest total and monthly soil losses (0.10 Mg ha−1 month−1) that correspond to the maximum protection of the soil by the crop-cover ($C$ factor = 0.05) due to the maximum stage of the growing season and intermediate values of rainfall and runoff erosivity, maximum rainfall intensity and soil erodibility. The third erosive period extends from November to April and has the minimum values of rainfall erosivity (17.5 MJ mm ha−1 h−1) and maximum rainfall intensity (6.0 mm h−1) with the highest number of freeze-thaw cycles, soil moisture content and soil erodibility (0.021 Mg h MJ−1 mm−1) that explain the high value of monthly soil loss (0.24 Mg ha−1 month−1). The interactions between the rainfall erosivity, soil erodibility, and cover-management factors explain the similar predicted soil losses for the first and the third erosive periods in spite of the strong temporal differences in the values of the three RUSLE factors. The estimated value of annual soil loss with the RUSLE model (3.34 Mg ha−1 yr−1) was lower than the measured value with 137Cs (5.38 Mg ha−1 yr−1) due to the low values of precipitation recorded during the studied period. To optimize agricultural practices and to promote sustainable strategies for the preservation of fragile Mediterranean agrosystems it is necessary to delay plowing till October, especially in dryland agriculture regions. Thus, the protective role of the crop residues will extend until September when the greatest rainfall occurs together with the highest runoff erosivity and soil losses.


Sign in / Sign up

Export Citation Format

Share Document