soil moisture content
Recently Published Documents


TOTAL DOCUMENTS

1053
(FIVE YEARS 297)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 826
Author(s):  
Jing Yuan ◽  
Bo Yu ◽  
Changxiang Yan ◽  
Junqiang Zhang ◽  
Ning Ding ◽  
...  

It is found that the remote sensing parameters such as spectral range, spectral resolution and signal-to-noise ratio directly affect the estimation accuracy of soil moisture content. However, the lack of research on the relationship between the parameters and estimation accuracy restricts the prolongation of application. Therefore, this study took the demand for this application as the foothold for developing spectrometry. Firstly, a method based on sensitivity analysis of soil radiative transfer model-successive projection algorithm (SA-SPA) was proposed to select sensitive wavelengths. Then, the spectral resampling method was used to select the best spectral resolution in the corresponding sensitive wavelengths. Finally, the noise-free spectral data simulated by the soil radiative transfer model was added with Gaussian random noise to change the signal-to-noise ratio, so as to explore the influence of signal-to-noise ratio on the estimation accuracy. The research results show that the estimation accuracy obtained through the SA-SPA (RMSEP < 12.1 g kg−1) is generally superior to that from full-spectrum data (RMSEP < 14 g kg−1). At selected sensitive wavelengths, the best spectral resolution is 34 nm, and the applicable signal-to-noise ratio ranges from 150 to 350. This study provides technical support for the efficient estimation of soil moisture content and the development of spectrometry, which comprehensively considers the common influence of spectral range, spectral resolution and signal-to-noise ratio on the estimation accuracy of soil moisture content.


2022 ◽  
Vol 77 (1) ◽  
pp. 39-51
Author(s):  
Brice Prudat ◽  
Wolfgang Fister ◽  
Lena Bloemertz ◽  
Juliane Krenz ◽  
Nikolaus J. Kuhn

Abstract. Sandy soils with fragipans are usually considered poorly suited for agriculture. However, these soils are cultivated in Namibia as they can secure a minimum harvest during droughts. In order to understand the hydrological influence of fragipans in these soils, Ehenge, their soil moisture content was measured for 4 months. These data were then compared to a deep soil without fragipan, Omutunda, which is more productive during normal years but less productive during droughts. The results illustrate that the combination of sandy topsoil and shallow fragipan has beneficial effects on plant-available water during dry periods. Three reasons can be determined: (i) high infiltration rate in the sandy topsoil, (ii) prevention of deep drainage by the fragipan, and (iii) limitation of evaporation losses through the sand. Consequently, transferring these findings to other dry, sandy areas with fragipans, with respective consequences on farming practices, crop productivity, and food security, should be possible.


Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 72-75
Author(s):  
Giuseppe Maggiotto

The Mediterranean region is a hot spot for climate change, and cities of this area will be exposed to both increasing temperatures and decreasing precipitations. Green Infrastructures (GIs) can lower urban temperatures through evapotranspiration with an adequate soil moisture content. Grey water reuse can both guarantee the right soil moisture content and reduce freshwater exploitation. In order to test the effectiveness of soil moisture on reducing air temperature, two modelling simulations ran with the microclimate CFD-based model ENVI-met 4.0. The chosen day was a registered heat wave (7 July 2019) in Lecce, a city of south Italy, which was selected as case study for the Mediterranean area. The results demonstrated the effectiveness of soil moisture on evapotranspiration in reducing air temperature. From a circular economy perspective, the supply of grey water for urban GIs represents a strategic adaptation strategy to the expected effects of climate change on the Mediterranean basin.


Author(s):  
Hanaa Ahmed ◽  
Kristen M. DeAngelis ◽  
Maureen A. Morrow

We report the draft genome sequence of Leifsonia poae strain BS71. This bacterium was isolated from a low soil moisture content model soil microcosm inoculated with forest soil that had been subject to chronic warming.


Author(s):  
Zihao Wu ◽  
Xiyue Wang ◽  
Xin Wang ◽  
Chao Yan ◽  
Chunmei Ma ◽  
...  

Background: As an important source of feed protein, soybean is involved in the processing industry, food industry and other fields. Therefore, in recent years, the demand for soybean has increased and soybean planting areas have also increased. However, frequent droughts have a serious impact on soybean yield. Methods: During the flowering period, the soybean plants were subjected to drought treatments of different degrees (0-7 days without water). The superoxide anion and proline contents in the leaves were determined. Then, fitting curves were drawn between the soil moisture content and the superoxide anion and proline contents. Result: The effects of different soil moisture contents on the superoxide anion and proline contents in soybean leaves and the correlation between these contents were analyzed. According to the fitting curves, with a decrease in the volumetric water content of soil, the superoxide anion and proline contents in soybean leaves increased. The superoxide anion contents in drought-tolerant cultivars were significantly lower than those in drought-sensitive cultivars and the proline contents were significantly higher in drought-tolerant cultivars than those in drought-sensitive cultivars. The superoxide anion content in soybean leaves was positively correlated with the proline content in the soil volumetric water content range of 31.5% to 14.5%.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Tzu-Ya Weng ◽  
Taiken Nakashima ◽  
Antonio Villanueva-Morales ◽  
J. Ryan Stewart ◽  
Erik J. Sacks ◽  
...  

Miscanthus, a high-yielding, warm-season C4 grass, shows promise as a potential bioenergy crop in temperate regions. However, drought may restrain productivity of most genotypes. In this study, total 29 Miscanthus genotypes of East-Asian origin were screened for drought tolerance with two methods, a dry-down treatment in two locations and a system where soil moisture content (SMC) was maintained at fixed levels using an automatic irrigation system in one location. One genotype, Miscanthus sinensis PMS-285, showed relatively high drought-tolerance capacity under moderate drought stress. Miscanthus sinensis PMS-285, aligned with the M. sinensis ‘Yangtze-Qinling’ genetic cluster, had relatively high principal component analysis ranking values in both two locations experiments, Hokkaido University and Brigham Young University. Genotypes derived from the ‘Yangtze-Qinling’ genetic cluster showed relatively greater photosynthetic performance than other genetic clusters, suggesting germplasm from this group could be a potential source of drought-tolerant plant material. Diploid genotypes showed stronger drought tolerance than tetraploid genotypes, suggesting ploidy could be an influential factor for this trait. Of the two methods, the dry-down treatment appears more suitable for selecting drought-tolerant genotypes given that it reflects water-stress conditions in the field. However, the fixed-SMC experiment may be good for understanding the physiological responses of plants to relatively constant water-stress levels.


Author(s):  
Josephine Kirui ◽  
Joshua Ngaina ◽  
Nzioka John Muthama ◽  
Gachuiri Charles Karuku

Milk production in Kenya is predominantly smallholder and dependent on rainfall. The study assesses spatiotemporal characteristics of smallholder milk production in Nandi County under changing climate. Climate (Rainfall and temperature), fodder availability (Normalized Difference Vegetation Index (NDVI) and soil moisture content) and milk production data were used. Methods included trend analysis, spatial plots, correlation and multi-regression analysis. Monthly NDVI and soil moisture content were high between April and November with seasonal analysis indicating highest/lowest June-August (JJA)/December-February (DJF) values. Percentage change (%Δ) for NDVI was 6.0% (DJF), 1.96% (March-May, MAM), 2.13% (JJA), 4.16% (September-November, SON) and (2.53% (Annual). Seasonal and annual %Δ for soil moisture content ranged 7.2-17.1% at 0-10cm level and 8.1-23.7% at 10-40 level. Trend analysis of milk production showed positive change from 2007 to 2016 and highest/lowest in December/April with seasonal %Δ of up to 186% (MAM), 183% (JJA), 202% (SON), 214% (DJF) and 204% (Annual). Majority of household (HH) owned between 1 and 20 acres of land with only 0.5 to 2 acres allocated to dairy farming while those allocating less than 1 acre practiced zero grazing. On average, HH had 2 lactating cows throughout the year with majority of dairy farmers (98.6%) owning improved cow breeds. Amount of milk per HH supplied to the farmer organization varied between 2.3 litres and 3.8 litres with computed daily average milk produced per HH being 18.8 litres. Active milk suppliers were highest/lowest in December/April whereas daily average milk production per HH between 2010 and 2016 was highest/lowest in January (23.7 litres)/August (15.6 litres). Lowest/highest correlation coefficients were found in precipitation/minimum temperature. Multi-regression analysis indicated that precipitation had significant contribution to dairy productivity. Given the sensitivity of milk production to climate and fodder availability, adequate adaptation and mitigation measures are necessary in order to sustainably enhance milk production.


2021 ◽  
Author(s):  
Thuanne Braúlio Hennig ◽  
Paulo Roger Lopes Alves ◽  
Felipe Ogliari Bandeira ◽  
Liziara da Costa Cabrera ◽  
Jonas Simon Dugatto ◽  
...  

Abstract The aim of this study was to assess the effect of temperature on the toxicity of fipronil toward earthworms (Eisenia andrei) in two Brazilian soils (Entisol and Oxisol) with contrasting textures. In the case of Entisol, the influence of the soil moisture content on the toxicity was also investigated. Earthworms were exposed for 56 days to soils spiked with increasing concentrations of fipronil under scenarios with different combinations of temperature (20, 25 and 27 ºC) and soil moisture content (60 and 30% of water holding capacity (WHC) for Entisol and 60% WHC for Oxisol). The number of juveniles produced was taken as the endpoint and a risk assessment was performed based on the hazard quotient (HQ). In Entisol, at 60% WHC the fipronil toxicity decreased at 27 ºC compared with the other temperatures tested (EC50 = 52.58, 48.48 and 110 mg kg-1 for 20, 25 and 27 ºC, respectively). In the case of Oxisol at 60% WHC, the fipronil toxicity increased at 27 ºC compared with other temperatures (EC50 = 277.57, 312.87 and 39.89 mg kg-1 at 20, 25 and 27 ºC, respectively). An increase in fipronil toxicity was also observed with a decrease in soil moisture content in Entisol at 27 ºC (EC50 = 27.95 and 110 mg kg-1 for 30% and 60% WHC, respectively). The risk of fipronil was only significant at 27 ºC in Entisol and Oxisol with water contents of 30% and 60% WHC, respectively, revealing that higher temperatures can increase the risk of fipronil toxicity toward earthworms. The results reported herein show that soil properties associated with climatic shifts could enhance the ecotoxicological effects and risk of fipronil for earthworms, depending on the type of soil.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2480
Author(s):  
Lucas Emmanuel Fesonae Dewenam ◽  
Salah Er-Raki ◽  
Jamal Ezzahar ◽  
Abdelghani Chehbouni

The main goal of this investigation was to evaluate the potential of the WOFOST model for estimating leaf area index (LAI), actual evapotranspiration (ETa), soil moisture content (SM), above-ground biomass levels (TAGP) and grain yield (TWSO) of winter wheat in the semi-arid region of Tensift Al Haouz, Marrakech (central Morocco). An application for the estimation of the Yield Gap is also provided. The model was firstly calibrated based on three fields data during the 2002–2003 and 2003–2004 growing seasons, by using the WOFOST implementation in the Python Crop simulation Environment (PCSE) to optimize the different parameters that provide the minimum difference between the measured and simulated LAI, TAGP, TWSO, SM and ETa. Then, the model validation was performed based on the data from five other wheat fields. The results obtained showed a good performance of the WOFOST model for the estimation of LAI during both growing seasons on all validation fields. The average R2, RSME and NRMSE were 91.4%, 0.57 m2/m2, and 41.4%, respectively. The simulated ETa dynamics also showed a good agreement with the observations by eddy covariance systems. Values of 60% and 72% for R2, 0.8 mm and 0.7 mm for RMSE, 54% and 31% for NRMSE are found for the two validation fields, respectively. The model’s ability to predict soil moisture content was also found to be satisfactory; the two validation fields gave R2 values equal to 48% and 49%, RMSE values equal to 0.03 cm3/cm3 and 0.05 cm3/cm3, NRMSE values equal to 11% and 19%. The calibrated model had a medium performance with respect to the simulation of TWSO (R2 = 42%, RSME = 512 kg/ha, NRMSE = 19%) and TAGP (R2 = 34% and RSME = 936 kg/ha, NRMSE = 16%). After accurate calibration and validation of the WOFOST model, it was used for analyzing the gap yield since this model is able to estimate the potential yield. The WOFOST model allowed a good simulation of the potential yield (7.75 t/ha) which is close to the optimum value of 6.270 t/ha in the region. Yield gap analysis reveals a difference of 5.35 t/ha on average between the observed yields and the potential yields calculated by WOFOST. Such difference is ascribable to many factors such as the crop cycle management, agricultural practices such as water and fertilization supply levels, etc. The various simulations (irrigation scenarios) showed that early sowing is more adequate than late sowing in saving water and obtaining adequate grain yield. Based on various simulations, it has been shown that the early sowing (mid to late December) is more adequate than late sowing with a total amount of water supply of about 430 mm and 322 kg (140 kg of N, 80 kg of P and 102 kg of K) of fertilization to achieve the potential yield. Consequently, the WOFOST model can be considered as a suitable tool for quantitative monitoring of winter wheat growth in the arid and semi-arid regions.


Sign in / Sign up

Export Citation Format

Share Document