Tracking and modelling water percolation process in modern intensive farming loess terraces

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105930
Author(s):  
Dalei Peng ◽  
Qiang Xu ◽  
Limin Zhang ◽  
Huilin Xing ◽  
Ping Shen ◽  
...  
2010 ◽  
Vol 24 (13) ◽  
pp. 1866-1879 ◽  
Author(s):  
J. Lange ◽  
Y. Arbel ◽  
T. Grodek ◽  
N. Greenbaum

2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2020 ◽  
Vol 8 ◽  
Author(s):  
Márton Balázs ◽  
Ofer Busani ◽  
Timo Seppäläinen

Abstract This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation process.


2016 ◽  
Vol 27 (07) ◽  
pp. 1650082 ◽  
Author(s):  
Xiao Jia ◽  
Jin-Song Hong ◽  
Ya-Chun Gao ◽  
Hong-Chun Yang ◽  
Chun Yang ◽  
...  

We investigate the percolation phase transitions in both the static and growing networks where the nodes are sampled according to a weighted function with a tunable parameter [Formula: see text]. For the static network, i.e. the number of nodes is constant during the percolation process, the percolation phase transition can evolve from continuous to discontinuous as the value of [Formula: see text] is tuned. Based on the properties of the weighted function, three typical values of [Formula: see text] are analyzed. The model becomes the classical Erdös–Rényi (ER) network model at [Formula: see text]. When [Formula: see text], it is shown that the percolation process generates a weakly discontinuous phase transition where the order parameter exhibits an extremely abrupt transition with a significant jump in large but finite system. For [Formula: see text], the cluster size distribution at the lower pseudo-transition point does not obey the power-law behavior, indicating a strongly discontinuous phase transition. In the case of growing network, in which the collection of nodes is increasing, a smoother continuous phase transition emerges at [Formula: see text], in contrast to the weakly discontinuous phase transition of the static network. At [Formula: see text], on the other hand, probability modulation effect shows that the nature of strongly discontinuous phase transition remains the same with the static network despite the node arrival even in the thermodynamic limit. These percolation properties of the growing networks could provide useful reference for network intervention and control in practical applications in consideration of the increasing size of most actual networks.


2017 ◽  
Vol 11 (2) ◽  
pp. 19-33
Author(s):  
Fagbohun Babatunde Joseph ◽  
Olabode Oluwaseun Franklin ◽  
Adebola Abiodun Olufemi

Abstract Identifying landscapes with similar hydrological characteristics is useful for the determination of dominant runoff process (DRP) and flood prediction. Several approaches used for DRP-mapping differ in respect to time and data requirement. Manual approaches based on field investigation and expert knowledge are time consuming and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but are easier to implement and it is applicable on regional scale. In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian Overland Flow (HOF) has the highest coverage of 1508.3 Km2 (33.5%) followed by Deep Percolation (DP) with coverage of 1455.3 Km2 (32.3%). Subsurface Flow (SSF) is the third dominant runoff process covering 920.6 Km2 (20.4%) while Saturated Overland Flow (SOF) covers the least area of 618.4 Km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices be considered to ensure continued sustainable utilization of groundwater in the study area.


New antibiotics are needed, ( a ) to control diseases that are refractory to existing ones either because of intrinsic or acquired drug resistance of the pathogen or because inhibition of the disease is difficult, at present, without damaging the host (fungal and viral diseases, and tumours), ( b ) for the control of plant pathogens and of invertebrates such as helminths, insects, etc., and ( c ) for growth promotion in intensive farming. Numerous new antibiotics are still being obtained from wild microbes, especially actinomycetes. Chemical modification of existing compounds has also had notable success. Here we explore the uses, actual and potential, of genetics to generate new antibiotics and to satisfy the ever-present need to increase yield. Yield improvement has depended in the past on mutation and selection, combined with optimization of fermentation conditions. Progress would be greatly accelerated by screening random recombinants between divergent high-yielding strains. Strain improvement may also be possible by the introduction of extra copies of genes of which the products are rate-limiting, or of genes conferring beneficial growth characteristics. Although new antibiotics can be generated by mutation, either through disturbing known biosyntheses or by activating ‘silent’ genes, we see more promise in interspecific recombination between strains producing different secondary metabolites, generating producers of ‘hybrid’ antibiotics. As with proposals for yield improvement, there are two major strategies for obtaining interesting recombinants of this kind: random recombination between appropriate strains, or the deliberate movement of particular biosynthetic abilities between strains. The development of protoplast technology in actinomycetes, fungi and bacilli has been instrumental in bringing these idealized strategies to the horizon. Protoplasts of the same or different species can be induced to fuse by polyethylene glycol. At least in intraspecific fusion of streptomycetes, random and high frequency recombination follows. Protoplasts can also be used as recipients for isolated DNA, again in the presence of polyethylene glycol, so that the deliberate introduction of particular genes into production strains can be realistically envisaged. Various kinds of DNA cloning vectors are being developed to this end. Gene cloning techniques also offer rich possibilities for the analysis of the genetic control of antibiotic biosynthesis, knowledge of which is, at present, minimal. The information that should soon accrue can be expected to have profound effects on the application of genetics to industrial microbiology.


2021 ◽  
Author(s):  
Margarida Arrobas ◽  
João V. Decker ◽  
Bruna L. Feix ◽  
Wilson I. Godoy ◽  
Carlos A. Casali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document