scholarly journals Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

2016 ◽  
Vol 269 ◽  
pp. 82-87 ◽  
Author(s):  
Karthikeyan K. Ramasamy ◽  
Michel Gray ◽  
Heather Job ◽  
Colin Smith ◽  
Yong Wang
Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


Author(s):  
Pavel Mayorov ◽  
Elena Asabina ◽  
Anna Zhukova ◽  
Diana Osaulenko ◽  
Vladimir Pet’kov ◽  
...  

2020 ◽  
Author(s):  
Leelavathi Annamalai ◽  
Sopuruchukwu Ezenwa ◽  
Yanliu Dang ◽  
Haiyan Tan ◽  
Steven L. Suib ◽  
...  

1995 ◽  
Vol 60 (6) ◽  
pp. 977-982
Author(s):  
S. Sugunan ◽  
V. Meera

The electron donor properties of perovskite-type mixed oxides (LaFeO3, PrFeO3, SmFeO3, LaCoO3, PrCoO3, SmCoO3, LaNiO3, PrNiO3 and SmNiO3) were studied based on the adsorption of electron acceptors exhibiting different electron affinity viz. 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro-1,4-benzoquinone, p-dinitrobenzene, and m-dinitrobenzene. The surface acidity/basicity of the oxides was determined using a set of Hammett indicators. The data were correlated with the catalytic activity of the oxides for the reduction of cyclohexanone with 2-propanol.


2017 ◽  
Vol 287 ◽  
pp. 30-36 ◽  
Author(s):  
Liwei Hou ◽  
Hui Zhang ◽  
Lihua Dong ◽  
Li Zhang ◽  
Daniel Duprez ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Anchale Tresatayawed ◽  
Peangpit Glinrun ◽  
Bunjerd Jongsomjit

The present study aims to investigate the catalytic ethanol dehydration to higher value products including ethylene, diethyl ether (DEE), and acetaldehyde. The catalysts used for this reaction were WO3/TiO2catalysts having W loading of 13.5 wt.%. For a comparative study, the TiO2supports employed were varied by two different preparation methods including the sol-gel and solvothermal-derived TiO2supports, denoted as TiO2-SG and TiO2-SV, respectively. It is obvious that the different preparation methods essentially altered the physicochemical properties of TiO2supports. It was found that the TiO2-SV exhibited higher surface area and pore volume and larger amounts of acid sites than those of TiO2-SG. As a consequence, different characteristics of support apparently affected the catalytic properties of WO3/TiO2catalysts. As expected, both catalysts WO3/TiO2-SG and WO3/TiO2-SV exhibited increased ethanol conversion with increasing temperatures from 200 to 400°C. It appeared that the highest ethanol conversion (ca. 88%) at 400°C was achieved by the WO3/TiO2-SV catalysts due to its high acidity. It is worth noting that the presence of WO3onto TiO2-SV yielded a remarkable increase in DEE selectivity (ca. 68%) at 250°C. In summary, WO3/TiO2-SV catalyst is promising to convert ethanol into ethylene and DEE, having the highest ethylene yield of ca. 77% at 400°C and highest DEE yield of ca. 26% at 250°C. These can be attributed to proper pore structure, acidity, and distribution of WO3.


Sign in / Sign up

Export Citation Format

Share Document