ethanol conversion
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 90)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 518 ◽  
pp. 112096
Author(s):  
Pavlo I. Kyriienko ◽  
Olga V. Larina ◽  
Dmytro Yu. Balakin ◽  
Mykhailo Vorokhta ◽  
Ivan Khalakhan ◽  
...  

2021 ◽  
pp. 152212
Author(s):  
Minhua Zhang ◽  
Xinyue Guan ◽  
Jianyu Zhuang ◽  
Yingzhe Yu

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Vladimír Ondáš ◽  
Hana Novanská ◽  
Viera Horváthová

Corn fiber due to its chemical composition (up to 20% starch, 50 - 60% non-starch polysaccharides) and availability has potential to serve as a substrate for manufacture of various products, including fuel ethanol. This paper deals with assessment of fiber-to-ethanol conversion. The water/dry fiber ratio in suspensions was 10/1. Enzyme liquefaction and saccharification of residual starch in corn fiber was carried out in two steps with thermostable α-amylase (20 min, 120°C) and mixture of pullulanase and glucomalyse (24 hours, 60°C). Procedures resulted in release of 57.7±1.6 mg of glucose per gram of dry fiber basis. It responds to the dextrose equivalent expression to 96.7±2.2%. By fermentation of the starch hydrolysates by yeasts Saccharomyces cerevisiae CCY-11-3 (5% v/v inoculum, 28°C, 72 hours) 0.48 g of ethanol per gram of glucose in hydrolysates was obtained. The solids after starch hydrolysis were separated by filtration and processed by acid pretreatment (0.1 g of conc. HCl/g of biomass/5 ml of water, 120°C, 20 min) with subsequent enzyme hydrolysis (24 hours, 60°C) by the multienzyme preparations containing cellulases and hemicellulases. Overall yield of reducing sugars after these two steps was 740.7±3.9 mg/gram of dry corn fiber basis. Fermentation of lignocellulosic hydrolysates by yeasts Pichia stipitis CCY-39-50-1 and Candida shehatea CCY-29-68-4 (in both cases 5% v/v inoculum, 28°C, 72 hours) resulted in 0.38 and 0.12 g of ethanol per gram of reducing sugars. The results indicate that applied pretreatment methods and used microorganisms are able to produce ethanol from corn fiber.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1411
Author(s):  
Aleksey N. Chernov ◽  
Tatiana V. Astrakova ◽  
Konstantin Yu. Koltunov ◽  
Vladimir I. Sobolev

Cobalt and nitrogen co-doped carbon materials (Co@CN) have recently attracted significant attention as highly efficient noble-metal-free catalysts exhibiting a large application range. In a similar research interest, and taking into account the ever-increasing importance of bioethanol as a renewable raw material, here, we report the results on ethanol dehydrogenation to acetaldehyde over Co@NC catalysts. The catalyst samples were synthesized by a variety of affordable techniques, ensuring generation of various types of Co species incorporated in carbon, such as subnanosized cobalt sites and nano-sized particles of metallic cobalt and cobalt oxides. The catalytic activity was tested under both oxidative and non-oxidative gas-phase conditions at 200–450 °C using a fixed-bed flow reactor. The non-oxidative conditions proved to be much more preferable for the target reaction, competing, however, with ethanol dehydration to ethylene. Under specified reaction conditions, ethanol conversion achieved a level of 66% with 84% selectivity to acetaldehyde at 400 °C. The presence of molecular oxygen in the feed led mainly to deep oxidation of ethanol to COx, giving acetaldehyde in a comparatively low yield. The potential contribution of carbon itself and supported cobalt forms to the observed reaction pathways is discussed.


2021 ◽  
pp. 100249
Author(s):  
Malik M. Mohammed ◽  
Nisreen Sabti Mohammed Ali ◽  
Hayder A. Alalwan ◽  
Alaa H. Alminshid ◽  
Haydar A. S. Aljaafari

2021 ◽  
Vol 19 (3) ◽  
pp. 195-198
Author(s):  
M.M. Mambetova ◽  
K. Dossumov ◽  
G.E. Ergaziyeva ◽  
M.M. Anissova ◽  
B.B. Baizhomartov

The conversion of ethanol on low-percentage copper-containing catalysts at temperatures of 300 oC and 350 oC was studied. γ-Al2O3, SiO2 and HZSM-5 were studied as the carrier of the active phase. It is shown that the main direction of ethanol conversion on low-percentage copper-containing catalysts is its dehydrogenation and subsequent conversion of the resulting products into 1,1-diethoxyethane. Among the studied catalysts (1 wt.% CuO/Al2O3, 1 wt.% CuO/SiO2 and 1 wt.% CuO/ HZSM-5 the most active in the production of 1,1-diethoxyethane was 1 wt.% CuO/Al2O3, modification of it with cerium oxide led to an increase in its activity in the formation of 1,1-diethoxyethane, at the reaction temperature of 350 oС, the yield of the target product was 27 vol.%. The results showed that the modification of CuO/Al2O3 leads to an increase in the catalytic activity of the sample.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1104
Author(s):  
Zahra Rajabi ◽  
Li Jones ◽  
Michela Martinelli ◽  
Dali Qian ◽  
Donald C. Cronauer ◽  
...  

The decarboxylation pathway in ethanol steam reforming ultimately favors higher selectivity to hydrogen over the decarbonylation mechanism. The addition of an optimized amount of Cs to Pt/m-ZrO2 catalysts increases the basicity and promotes the decarboxylation route, converting ethanol to mainly H2, CO2, and CH4 at low temperature with virtually no decarbonylation being detected. This offers the potential to feed the product stream into a conventional methane steam reformer for the production of hydrogen with higher selectivity. DRIFTS and the temperature-programmed reaction of ethanol steam reforming, as well as fixed bed catalyst testing, revealed that the addition of just 2.9% Cs was able to stave off decarbonylation almost completely by attenuating the metallic function. This occurs with a decrease in ethanol conversion of just 16% relative to the undoped catalyst. In comparison with our previous work with Na, this amount is—on an equivalent atomic basis—just 28% of the amount of Na that is required to achieve the same effect. Thus, Cs is a much more efficient promoter than Na in facilitating decarboxylation.


Author(s):  
Henrique Brasil ◽  
Albert F.B. Bittencourt ◽  
Kathlen C.E.S. Yokoo ◽  
Paulo C.D. Mendes ◽  
Lucas G. Verga ◽  
...  

Author(s):  
Ionut Banu ◽  
Alma-Valentina Brosteanu ◽  
Gheorghe Bumbac ◽  
Grigore Bozga

Sign in / Sign up

Export Citation Format

Share Document