Neuroendocrine responses of a crustacean host to viral infection: Effects of infection of white spot syndrome virus on the expression and release of crustacean hyperglycemic hormone in the crayfish Procambarus clarkii

Author(s):  
Ling-Jiun Lin ◽  
Yan-Jhou Chen ◽  
Yun-Shiang Chang ◽  
Chi-Ying Lee
2014 ◽  
Vol 95 (5) ◽  
pp. 1126-1134 ◽  
Author(s):  
Tawut Rudtanatip ◽  
Somluk Asuvapongpatana ◽  
Boonsirm Withyachumnarnkul ◽  
Kanokpan Wongprasert

The present study was aimed at evaluating an underlying mechanism of the antiviral activity of the sulfated galactans (SG) isolated from the red seaweed Gracilaria fisheri against white spot syndrome virus (WSSV) infection in haemocytes of the black tiger shrimp Penaeus monodon. Primary culture of haemocytes from Penaeus monodon was performed and inoculated with WSSV, after which the cytopathic effect (CPE), cell viability and viral load were determined. Haemocytes treated with WSSV-SG pre-mix showed decreased CPE, viral load and cell mortality from the viral infection. Solid-phase virus-binding assays revealed that SG bound to WSSV in a dose-related manner. Far Western blotting analysis indicated that SG bound to VP 26 and VP 28 proteins of WSSV. In contrast to the native SG, desulfated SG did not reduce CPE and cell mortality, and showed low binding activity with WSSV. The current study suggests that SG from Gracilaria fisheri elicits its anti-WSSV activity by binding to viral proteins that are important for the process of viral attachment to the host cells. It is anticipated that the sulfate groups of SG are important for viral binding.


2007 ◽  
Vol 81 (12) ◽  
pp. 6709-6717 ◽  
Author(s):  
Xuhua Tang ◽  
Jinlu Wu ◽  
J. Sivaraman ◽  
Choy Leong Hew

ABSTRACT White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 Å, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt β-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core β-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.


Sign in / Sign up

Export Citation Format

Share Document