crustacean host
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12281
Author(s):  
Jibom Jung ◽  
Ryuta Yoshida ◽  
Damin Lee ◽  
Joong-Ki Park

Morphological and molecular analyses of Korean rhizocephalan barnacle species were performed to examine their host ranges and taxonomy. Morphological examination and molecular analysis of mtDNA cox1, 16S, and nuclear 18S rRNA sequences revealed nine rhizocephalan species from three genera of the two families, Sacculinidae and Polyascidae. Phylogenetic analysis of molecular sequences revealed two new species candidates in the genus Parasacculina, and three Sacculina species (S. pilosella, S. pinnotherae, and S. imberbis) were transferred to the genus Parasacculina. Examination of host ranges revealed higher host specificity and lower infestation rates in Korean rhizocephalan species than rhizocephalans from other geographic regions. This is the first report of the taxonomy, species diversity, and host ranges of Korean parasitic rhizocephalan barnacles based on their morphological and molecular analyses. More information from extensive sampling of parasitic barnacles from a wide range of crustacean host species is necessary to fully understand their taxonomy, prevalence on decapod hosts, and phylogenetic relationships among major rhizocephalan taxa.



2021 ◽  
pp. 41-69
Author(s):  
Jose Reyes Gonzalez-Galaviz ◽  
Jesus Guadalupe García-Clark ◽  
Cesar Marcial Escobedo-Bonilla ◽  
Libia Zulema Rodriguez-Anaya


2021 ◽  
Author(s):  
Charlotte E Davies ◽  
Jessica E Thomas ◽  
Sophie H Malkin ◽  
Frederico M Batista ◽  
Andrew F Rowley ◽  
...  

Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally – considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune-suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium- positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1,191 analysed. Crabs were interrogated for additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity toward Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is an immune-evader rather than immune-suppressor, which suggests an evolutionary drive toward latency in this environmentally plastic host.



Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 49
Author(s):  
Chahinez Bouguerche ◽  
Fadila Tazerouti ◽  
Delphine Gey ◽  
Jean-Lou Justine

Cyclocotyla bellones Otto, 1823 (Diclidophoridae) is a monogenean characterised by an exceptional way of life. It is a hyperparasite that attaches itself to the dorsal face of isopods, themselves parasites in the buccal cavity of fishes. In this study, Cy. bellones was found on Ceratothoa parallela (Otto, 1828), a cymothoid isopod parasite of the sparid fish Boops boops off Algeria in the Mediterranean Sea. We provide, for the first time, molecular barcoding information of a hyperparasitic monogenean, the parasitic crustacean host, and the fish host, with COI sequences.





2019 ◽  
Vol 190 (2) ◽  
pp. 632-653 ◽  
Author(s):  
Jens T Høeg ◽  
Christoph Noever ◽  
David A Rees ◽  
Keith A Crandall ◽  
Henrik Glenner

Abstract Rhizocephalans are abundant members of marine ecosystems and are important regulators of crustacean host populations. Morphological and ecological variation makes them an attractive system for evolutionary studies of advanced parasitism. Such studies have been impeded by a largely formalistic taxonomy, because rhizocephalan morphology offers no characters for a robust phylogenetic analysis. We use DNA sequence data to estimate a new phylogeny for 43 species and use this to develop a revised taxonomy for all Rhizocephala. Our taxonomy accepts 13 new or redefined monophyletic families. The traditional subdivision into the suborders Kentrogonida and Akentrogonida is abandoned, because both are polyphyletic. The three ‘classical’ kentrogonid families are also polyphyletic, including the species-rich Sacculinidae, which is split into a redefined and a new family. Most species of large families remain to be studied based on molecular evidence and are therefore still assigned to their current genus and family by default. We caution against undue generalizations from studies on model species until a more stable species-level taxonomy is also available, which requires more extensive genus- and species-level sampling with molecular tools. We briefly discuss the most promising future studies that will be facilitated by this new phylogeny-based taxonomy.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jamie Bojko ◽  
Kuttichantran Subramaniam ◽  
Thomas B. Waltzek ◽  
Grant D. Stentiford ◽  
Donald C. Behringer

Abstract Carcinus maenas is in the top 100 globally invasive species and harbours a wide diversity of pathogens, including viruses. We provide a detailed description for a novel bunyavirus (Carcinus maenas Portunibunyavirus 1) infecting C. maenas from its native range in the Faroe Islands. The virus genome is tripartite, including large (L) (6766 bp), medium (M) (3244 bp) and small (S) (1608 bp) negative sense, single-stranded RNA segments. Individual genomic segments are flanked by 4 bp regions of similarity (CCUG). The segments encode an RNA-dependent RNA-polymerase, glycoprotein, non-structural protein with a Zinc-Finger domain and a nucleoprotein. Most show highest identity to the ‘Wenling Crustacean Virus 9’ from an unidentified crustacean host. Phylogenomics of crustacean-infecting bunyaviruses place them across multiple bunyavirus families. We discuss the diversity of crustacean bunyaviruses and provide an overview of how these viruses may affect the health and survival of crustacean hosts, including those inhabiting niches outside of their native range.



2018 ◽  
Vol 4 ◽  
Author(s):  
Seila Couso-Pérez ◽  
Antonio Cañizo-Outeiriño ◽  
Rainer Campo-Ramos ◽  
Elvira Ares-Mazás ◽  
Hipólito Gómez-Couso

Abstract This is the first report on the presence of acanthocephalan parasite Echinorhynchus truttae in brown trout (Salmo trutta) from Spain. A total of 343 fish were captured by local anglers from 19 rivers in the adjacent Tambre and Ulla watersheds in Galicia (north-western Spain). Macroscopic and microscopic analyses of the intestinal contents revealed the presence of adults and/or eggs of E. truttae in 53 of the 123 trout from Tambre river basin (43.1%). By contrast, parasitic forms of this acanthocephalan were only observed in eight of the 220 fish from Ulla basin (3.6%), showing significant differences between the prevalences obtained in two adjacent watersheds (P < 0.001, odds ratio 19.0). Prevalence was significantly higher in specimens >3 years (length >26.0 cm) than in younger specimens (P < 0.05). The absence of Gammarus pulex in the region suggests that native gammarid species in Galicia (Echinogammarus lusitanicus and Echinogammarus beriyoni) may act as intermediate host in the life cycle of E. truttae. Different prevalences of E. truttae indicate that the presence/abundance of the intermediate crustacean host may be different in the two river basins, probably as a consequence of various abiotic factors and anthropogenic activities.





2013 ◽  
Vol 9 (2) ◽  
pp. 20121145 ◽  
Author(s):  
Pedro F. Vale ◽  
Marc Choisy ◽  
Tom J. Little

The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna , we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.



Sign in / Sign up

Export Citation Format

Share Document