scholarly journals Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates

Author(s):  
Jay F. Storz ◽  
Graham R. Scott
2021 ◽  
Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

ABSTRACTPhysiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated the in vivo effects on respiratory physiology of genetic variants in haemoglobin (Hb) that contribute to hypoxia adaptation in high-altitude deer mice (Peromyscus maniculatus). We created F2 inter-population hybrids of highland and lowland deer mice to test the phenotypic effects of α- and β-globin variants on a mixed genetic background. High-altitude genotypes were associated with breathing phenotypes that enhance O2 uptake in hypoxia, including a deeper more effective breathing pattern and an augmented hypoxic ventilatory response. These effects could not be explained by erythrocyte Hb-O2 affinity or globin gene expression in the brainstem. Therefore, adaptive variation in haemoglobin can have unexpected effects on physiology that are distinct from the canonical function of this protein in circulatory O2 transport.


2020 ◽  
Author(s):  
Tao Wang ◽  
Yuanyuan Guo ◽  
Shengwei Liu ◽  
Chaoxin Zhang ◽  
Tongyan Cui ◽  
...  

Abstract Background: Tibetan pigs are native mammalian species on the Tibetan Plateau that have evolved distinct physiological traits that allow them to tolerate high-altitude hypoxic environments. They can be used as a suitable animal model for exploring the molecular mechanism of hypoxia adaptation in high-altitude organisms.Results: Here, based on multi-tissue transcriptional data from high-altitude Tibetan pigs and low-altitude Rongchang pigs, we performed a weighted correlation network analysis (WGCNA) and identified key modules related to these tissues. Complex network analysis and bioinformatics analysis were integrated to identify key genes and size-3 network motifs. The results showed that compared to other tissues, the lungs of Tibetan pigs and Rongchang pigs are more significantly different, showing more adaptive transcriptional changes. In the lung tissues of Tibetan pigs, we identified KLF4, BCL6B, EGR1, EPAS1, SMAD6, SMAD7, KDR, ATOH8 and CCN1 genes as potential regulators of hypoxia adaption. We found that KLF4 and EGR1 genes simultaneously regulate the BCL6B gene, forming a KLF4-EGR1-BCL6B transitive triplet. This transitive triplet, dominated by KLF4, may enhance the hypoxia adaptability of Tibetan pigs by mediating the TGF-β signaling pathway. This triplet also regulates the KDR gene, which is involved in the PI3K-Akt signaling pathway and plays an important role in hypoxia adaptation. Conclusions: We postulate that the KLF4-EGR1-BCL6B transitive triplet may contribute to the adaptation of Tibetan pigs to hypoxic environments. These findings provide new details of the regulatory architecture of hypoxia-adaptive genes and are valuable for understanding the genetic mechanism of hypoxic adaptation in mammals.


2013 ◽  
Vol 59 (4) ◽  
pp. 526-536 ◽  
Author(s):  
Matthew R.J. Morris ◽  
Sean M. Rogers

Abstract Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation) and two of which do not (standing epigenetic variation, plastic compensation). Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.


Evolution ◽  
2018 ◽  
Vol 72 (12) ◽  
pp. 2712-2727 ◽  
Author(s):  
Jonathan P. Velotta ◽  
Catherine M. Ivy ◽  
Cole J. Wolf ◽  
Graham R. Scott ◽  
Zachary A. Cheviron

Sign in / Sign up

Export Citation Format

Share Document