scholarly journals Overcoming maladaptive plasticity through plastic compensation

2013 ◽  
Vol 59 (4) ◽  
pp. 526-536 ◽  
Author(s):  
Matthew R.J. Morris ◽  
Sean M. Rogers

Abstract Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation) and two of which do not (standing epigenetic variation, plastic compensation). Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexander Lalejini ◽  
Austin J. Ferguson ◽  
Nkrumah A. Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.


Genome ◽  
2010 ◽  
Vol 53 (3) ◽  
pp. 211-223 ◽  
Author(s):  
Hiroyuki Shimizu ◽  
Masamichi Maruoka ◽  
Naofumi Ichikawa ◽  
Akhil Ranjan Baruah ◽  
Naohiro Uwatoko ◽  
...  

Phenotypic plasticity is an adaptive mechanism adopted by plants in response to environmental heterogeneity. Cultivated and wild species adapt in contrasting environments; however, it is not well understood how genetic changes responsible for phenotypic plasticity were involved in crop evolution. We investigated the genetic control of phenotypic plasticity in Asian cultivated ( Oryza sativa ) and wild rice ( O. rufipogon ) under 5 environmental conditions (2 nutrient and 3 density levels). Quantitative trait locus (QTL) analysis was conducted for traits affecting plant architecture and biomass production. By analysing the phenotypic means, QTLs of large effects were detected as a cluster on chromosome 7 under all the environmental conditions investigated; this might have contributed to transitions of plant architecture during domestication, as reported previously. Multiple QTLs of plasticity were also found within this QTL cluster, demonstrating that allele-specific environmental sensitivity might control plasticity. Furthermore, QTLs controlling plasticity without affecting phenotypic means were also identified. The mode of action and direction of allele effects of plasticity QTLs varied depending on the traits and environmental signals. These findings confirmed that cultivated and wild rice show distinctive genetic differentiation for phenotypic plasticity, which might have contributed to adaptation under contrasting environmental heterogeneity during the domestication of rice.


2021 ◽  
Author(s):  
Alexander M Lalejini ◽  
Austin J Ferguson ◽  
Nkrumah A Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles via deleterious hitchhiking, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.


2018 ◽  
Vol 58 (6) ◽  
pp. 1098-1110 ◽  
Author(s):  
Jonathan P Velotta ◽  
Zachary A Cheviron

AbstractPhenotypic plasticity is not universally adaptive. In certain cases, plasticity can result in phenotypic shifts that reduce fitness relative to the un-induced state. A common cause of such maladaptive plasticity is the co-option of ancestral developmental and physiological response systems to meet novel challenges. Because these systems evolved to meet specific challenges in an ancestral environment (e.g., localized and transient hypoxia), their co-option to meet a similar, but novel, stressor (e.g., reductions in ambient pO2 at high elevation) can lead to misdirected responses that reduce fitness. In such cases, natural selection should act to remodel phenotypic plasticity to suppress the expression of these maladaptive responses. Because these maladaptive responses reduce the fitness of colonizers in new environments, this remodeling of ancestral plasticity may be among the earliest steps in adaptive walks toward new local optima. Genetic compensation has been proposed as a general form of adaptive evolution that leads to the suppression of maladaptive plasticity to restore the ancestral trait value in the face of novel stimuli. Given their central role in the regulation of basic physiological functions, we argue that genetic compensation may often be achieved by modifications of homeostatic regulatory systems. We further suggest that genetic compensation to modify homeostatic systems can be achieved by two alternative strategies that differ in their mechanistic underpinnings; to our knowledge, these strategies have not been formally recognized by previous workers. We then consider how the mechanistic details of these alternative strategies may constrain their evolution. These considerations lead us to argue that genetic compensation is most likely to evolve by compensatory physiological changes that safeguard internal homeostatic conditions to prevent the expression of maladaptive portions of conserved reaction norms, rather than direct evolution of plasticity itself. Finally, we outline a simple experimental framework to test this hypothesis. Our goal is to stimulate research aimed at providing a deeper mechanistic understanding of whether and how phenotypic plasticity can be remodeled following environmental shifts that render ancestral responses maladaptive, an issue with increasing importance in our current era of rapid environmental change.


2018 ◽  
Author(s):  
Cristina Acasuso-Rivero ◽  
Courtney J. Murren ◽  
Carl D. Schlichting ◽  
Ulrich K. Steiner

ABSTRACTOrganisms are faced with variable environments and one of the most common solutions to cope with such variability is phenotypic plasticity, a modification of the phenotype to the environment. These modifications influence ecological and evolutionary processes and are assumed to be adaptive. The assumption of adaptive plasticity allows to derive the prediction that the closer to fitness a trait is, the less plastic it would be. To test this hypothesis, we conducted a meta-analysis of 213 studies and measured the plasticity of each reported trait as coefficient of variation (CV). Traits were categorised according to their relationship to fitness into life-history traits (LHt) including reproduction and survival related-traits, and non-life-history traits (N-LHt) including traits related to development, metabolism and physiology, morphology and behaviour. Our results showed, unexpectedly, that although traits differed in their amounts of plasticity, trait plasticity did not correlate with its proximity to fitness. These findings were independent of taxonomic groups or environmental types assessed and raise questions about the ubiquity of adaptive plasticity. We caution about generalising the assumption that all plasticity is adaptive with respect to evolutionary and ecological population processes. More studies are needed that test the adaptive nature of plasticity, and additional theoretical explorations on adaptive and non-adaptive plasticity are encouraged.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Benjamin M. Fitzpatrick

Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation). Plasticity can cause assortative mating, but its influence on gene flow ultimately depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190653 ◽  
Author(s):  
Cristina Acasuso-Rivero ◽  
Courtney J. Murren ◽  
Carl D. Schlichting ◽  
Ulrich K. Steiner

Organisms are faced with variable environments and one of the most common solutions to cope with such variability is phenotypic plasticity, a modification of the phenotype to the environment. These modifications are commonly modelled in evolutionary theories as adaptive, influencing ecological and evolutionary processes. If plasticity is adaptive, we would predict that the closer to fitness a trait is, the less plastic it would be. To test this hypothesis, we conducted a meta-analysis of 213 studies and measured the plasticity of each reported trait as a coefficient of variation. Traits were categorized as closer to fitness—life-history traits including reproduction and survival related traits, and farther from fitness—non-life-history traits including traits related to development, metabolism and physiology, morphology and behaviour. Our results showed, unexpectedly, that although traits differed in their amounts of plasticity, trait plasticity was not related to its proximity to fitness. These findings were independent of taxonomic groups or environmental types assessed. We caution against general expectations that plasticity is adaptive, as assumed by many models of its evolution. More studies are needed that test the adaptive nature of plasticity, and additional theoretical explorations on adaptive and non-adaptive plasticity are encouraged.


Sign in / Sign up

Export Citation Format

Share Document