genetic assimilation
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Sarah Ruth Marzec ◽  
Katharine Pelletier ◽  
Amy Hui-Pin Chang ◽  
Ian Dworkin

Over 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington's selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely cryptic.


2021 ◽  
Author(s):  
Alex R Gunderson ◽  
Liam J. Revell

Genetic assimilation is a process that leads to reduced phenotypic plasticity during adaptation to novel conditions, a potentially important phenomenon under global environmental change. Null expectations when testing for genetic assimilation, however, are not always clear. For instance, the statistical artifact of regression to the mean could bias us towards detecting genetic assimilation when it has not occurred. Likewise, the specific mechanism underlying plasticity expression may affect null expectations under neutral evolution. We used macroevolutionary numerical simulations to examine both of these important issues and their interaction, varying whether or not plasticity evolves, the evolutionary mechanism, trait measurement error, and experimental design. We also modified an existing reaction norm correction method to account for phylogenetic non-independence. We found: 1) regression to the mean is pervasive and can generate spurious support for genetic assimilation; 2) experimental design and post-hoc correction can minimize this spurious effect; and 3) neutral evolution can produce patterns consistent with genetic assimilation without constraint or selection, depending on the mechanism of plasticity expression. Additionally, we re-analyzed published macroevolutionary data supporting genetic assimilation, and found that support was lost after proper correction. Considerable caution is thus required whenever investigating genetic assimilation and reaction norm evolution at macroevolutionary scales.


2021 ◽  
Author(s):  
Daniel Wood ◽  
Jon A Holmberg ◽  
Owen Gregory Osborne ◽  
Andrew J Helmsetter ◽  
Luke T Dunning ◽  
...  

Phenotypic plasticity in ancestral populations is hypothesised to facilitate adaptation, but evidence supporting its contribution is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel genetic and phenotypic adaptive changes has not been explored. The most general finding is that nearly all ancestral gene expression plasticity is reversed following adaptation, but this is usually examined transcriptome-wide rather than focused on the genes directly involved in adaptation. We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared to ancestral, zinc-sensitive plants. Our experiments show that reinforcement of ancestral plasticity plays an influential role in the evolution of plasticity in derived populations and, surprisingly, one third of constitutive differences between ecotypes are the result of genetic assimilation of ancestral plasticity. Ancestral plasticity also increases the chance that genes are recruited repeatedly during adaptation. However, despite a high degree of convergence in gene expression levels between independently adapted lineages, genes with ancestral plasticity are as likely to have similar expression levels in adapted populations as genes without. Overall, these results demonstrate that ancestral plasticity does play an important role in adaptive parallel evolution, particularly via genetic assimilation across evolutionary replicates.


Author(s):  
Laurent Loison

The aim of this article is to put the growing interest in epigenetics in the field of evolutionary theory into a historical context. First, I assess the view that epigenetic inheritance could be seen as vindicating a revival of (neo)Lamarckism. Drawing on Jablonka's and Lamb's considerable output, I identify several differences between modern epigenetics and what Lamarckism was in the history of science. Even if Lamarckism is not back, epigenetic inheritance might be appealing for evolutionary biologists because it could potentiate two neglected mechanisms: the Baldwin effect and genetic assimilation. Second, I go back to the first ideas about the Baldwin effect developed in the late nineteenth century to show that the efficiency of this mechanism was already linked with a form of non-genetic inheritance. The opposition to all forms of non-genetic inheritance that prevailed at the time of the rise of the Modern Synthesis helps to explain why the Baldwin effect was understood as an insignificant mechanism during the second half of the twentieth century. Based on this historical reconstruction, in §4, I examine what modern epigenetics can bring to the picture and under what conditions epigenetic inheritance might be seen as strengthening the causal relationship between adaptability and adaptation. Throughout I support the view that the Baldwin effect and genetic assimilation, even if they are quite close, should not be conflated, and that drawing a line between these concepts is helpful in order to better understand where epigenetic inheritance might endorse a new causal role.This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’


2021 ◽  
Vol 7 (6) ◽  
pp. eabd9941
Author(s):  
Paul Vigne ◽  
Clotilde Gimond ◽  
Céline Ferrari ◽  
Anne Vielle ◽  
Johan Hallin ◽  
...  

Genetic assimilation—the evolutionary process by which an environmentally induced phenotype is made constitutive—represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation—by either genetic drift or selection—of an ancestrally plastic trait.


2020 ◽  
Author(s):  
Paul Vigne ◽  
Clotilde Gimond ◽  
Céline Ferrari ◽  
Anne Vielle ◽  
Johan Hallin ◽  
...  

Genetic assimilation – the evolutionary process by which an ancestral environmentally sensitive phenotype is made constitutive – is a fundamental concept in biology. Its evolutionary relevance is debated, and our understanding of its prevalence, and underlying genetics and molecular mechanisms, is poor. Matricidal hatching is an extreme form of maternal provisioning induced by adverse conditions, which varies among Caenorhabditis elegans populations. We identified wild isolates, sampled from natural populations across multiple years and locations, that express a derived state of near-constitutive matricidal hatching. A single amino acid change in kcnl-1, encoding a small-conductance calcium-activated potassium channel subunit, explains most of this variation. A gain-of-function mutation altering the S6 transmembrane domain causes inappropriate activation of the K+ channel, leading to reduced vulval muscle excitability, and thus reduced expulsion of embryos, irrespective of environment. Using reciprocal allelic replacements, we show that this amino acid change is sufficient to induce constitutive matricidal hatching whilst re-establishing the ancestral protein abolishes matricidal hatching and restores egg-laying, thereby doubling lifetime reproductive fitness under benign conditions. While highly deleterious in the laboratory, experimental evolution showed that KNCL-1(V530L) is maintained under fluctuating resource availability. Selection on a single point mutation can therefore underlie the genetic assimilation of an ancestrally plastic trait with drastic life-history consequences.


Sign in / Sign up

Export Citation Format

Share Document