1400 W improves cardioprotective effect of matrix metalloproteinase 2 and myosin light chain kinase inhibitors in hearts subjected to ischemia/reperfusion injury

2019 ◽  
Vol 493 ◽  
pp. S195
Author(s):  
A. Krzywonos-Zawadzka ◽  
A. Franczak ◽  
G. Sawicki ◽  
A. Olejnik ◽  
I. Bil-Lula
2012 ◽  
Vol 75 (17) ◽  
pp. 5386-5395 ◽  
Author(s):  
Han-bin Lin ◽  
Virgilio J.J. Cadete ◽  
Jolanta Sawicka ◽  
Mieczyslaw Wozniak ◽  
Grzegorz Sawicki

2020 ◽  
Vol 21 (19) ◽  
pp. 6990
Author(s):  
Kamilla Gömöri ◽  
Tamara Szabados ◽  
Éva Kenyeres ◽  
Judit Pipis ◽  
Imre Földesi ◽  
...  

Background: We recently developed novel matrix metalloproteinase-2 (MMP-2) inhibitor small molecules for cardioprotection against ischemia/reperfusion injury and validated their efficacy in ischemia/reperfusion injury in cardiac myocytes. The aim of the present study was to test our lead compounds for cardioprotection in vivo in a rat model of acute myocardial infarction (AMI) in the presence or absence of hypercholesterolemia, one of the major comorbidities affecting cardioprotection. Methods: Normocholesterolemic adult male Wistar rats were subjected to 30 min of coronary occlusion followed by 120 min of reperfusion to induce AMI. MMP inhibitors (MMPI)-1154 and -1260 at 0.3, 1, and 3 µmol/kg, MMPI-1248 at 1, 3, and 10 µmol/kg were administered at the 25th min of ischemia intravenously. In separate groups, hypercholesterolemia was induced by a 12-week diet (2% cholesterol, 0.25% cholic acid), then the rats were subjected to the same AMI protocol and single doses of the MMPIs that showed the most efficacy in normocholesterolemic animals were tested in the hypercholesterolemic animals. Infarct size/area at risk was assessed at the end of reperfusion in all groups by standard Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial microvascular obstruction (MVO) was determined by thioflavine-S staining. Results: MMPI-1154 at 1 µmol/kg, MMPI-1260 at 3 µmol/kg and ischemic preconditioning (IPC) as the positive control reduced infarct size significantly; however, this effect was not seen in hypercholesterolemic animals. MVO in hypercholesterolemic animals decreased by IPC only. Conclusions: This is the first demonstration that MMPI-1154 and MMPI-1260 showed a dose-dependent infarct size reduction in an in vivo rat AMI model; however, single doses that showed the most efficacy in normocholesterolemic animals were abolished by hypercholesterolemia. The further development of these promising cardioprotective MMPIs should be continued with different dose ranges in the study of hypercholesterolemia and other comorbidities.


Circulation ◽  
2005 ◽  
Vol 112 (4) ◽  
pp. 544-552 ◽  
Author(s):  
Grzegorz Sawicki ◽  
Hernando Leon ◽  
Jolanta Sawicka ◽  
Meltem Sariahmetoglu ◽  
Costas J. Schulze ◽  
...  

2016 ◽  
Vol 311 (6) ◽  
pp. C996-C1004 ◽  
Author(s):  
Younggeon Jin ◽  
Anthony T. Blikslager

Intestinal anoxia/reoxygenation (A/R) injury induces loss of barrier function followed by epithelial repair. Myosin light chain kinase (MLCK) has been shown to alter barrier function via regulation of interepithelial tight junctions, but has not been studied in intestinal A/R injury. We hypothesized that A/R injury would disrupt tight junction barrier function via MLCK activation and myosin light chain (MLC) phosphorylation. Caco-2BBe1 monolayers were subjected to anoxia for 2 h followed by reoxygenation in 21% O2, after which barrier function was determined by measuring transepithelial electrical resistance (TER) and FITC-dextran flux. Tight junction proteins and MLCK signaling were assessed by Western blotting, real-time PCR, or immunofluorescence microscopy. The role of MLCK was further investigated with select inhibitors (ML-7 and peptide 18) by using in vitro and ex vivo models. Following A/R injury, there was a significant increase in paracellular permeability compared with control cells, as determined by TER and dextran fluxes ( P < 0.05). The tight junction protein occludin was internalized during A/R injury and relocalized to the region of the tight junction after 4 h of recovery. MLC phosphorylation was significantly increased by A/R injury ( P < 0.05), and treatment with the MLCK inhibitor peptide 18 attenuated the increased epithelial monolayer permeability and occludin endocytosis caused by A/R injury. Application of MLCK inhibitors to ischemia-injured porcine ileal mucosa induced significant increases in TER and reduced mucosal-to-serosal fluxes of3H-labeled mannitol. These data suggest that MLCK-induced occludin endocytosis mediates intestinal epithelial barrier dysfunction during A/R injury. Our results also indicate that MLCK-dependent occludin regulation may be a target for the therapeutic treatment of ischemia/reperfusion injury.


FEBS Journal ◽  
2012 ◽  
Vol 279 (13) ◽  
pp. 2444-2454 ◽  
Author(s):  
Virgilio J. J. Cadete ◽  
Jolanta Sawicka ◽  
Jagdip S. Jaswal ◽  
Gary D. Lopaschuk ◽  
Richard Schulz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document