Convenient synthesis of hexasubstituted benzene derivatives via DABCO promoted domino reaction of arylidene malononitrile and dialkyl but-2-ynedioate

Author(s):  
Hui Zheng ◽  
Ying Han ◽  
Jing Sun ◽  
Chao-Guo Yan
Synlett ◽  
2009 ◽  
Vol 2009 (06) ◽  
pp. 1004-1008 ◽  
Author(s):  
Mark Lautens ◽  
Valentina Aureggi ◽  
Marion Davoust ◽  
Kersten Gericke

ChemInform ◽  
2009 ◽  
Vol 40 (32) ◽  
Author(s):  
Valentina Aureggi ◽  
Marion Davoust ◽  
Kersten M. Gericke ◽  
Mark Lautens

RSC Advances ◽  
2014 ◽  
Vol 4 (95) ◽  
pp. 52629-52632 ◽  
Author(s):  
Yufen Liu ◽  
Qi Zhang ◽  
Yanlong Du ◽  
Aimin Yu ◽  
Kui Zhang ◽  
...  

A DABCO catalyzed domino reaction between 3-oxo-4-(2-oxoindolin-3-ylidene) butanoates and allenoates furnished 2,3,5-substituted tetrahydrofuran furan derivatives bearing oxindole moiety and two exocyclic double bonds in high yield.


1991 ◽  
Vol 88 ◽  
pp. 509-514 ◽  
Author(s):  
MA Cuevas Diarte ◽  
T Calvet ◽  
M Labrador ◽  
E Estop ◽  
HAJ Oonk ◽  
...  

Author(s):  
Autumn Flynn ◽  
Kelly McDaniel ◽  
Meredith Hughes ◽  
David Vogt ◽  
Nathan Jui

A photocatalytic system for the dearomative hydroarylation of benzene derivatives has been developed. Using a combination of an organic photoredox catalyst and an amine reductant, this process operates through a reductive radical-polar crossover mechanism where aryl halide reduction triggers a regioselective cyclization event, giving rise to a range of complex spirocyclic cyclohexadienes. This light-driven protocol functions at room temperature in a green solvent system (aq. MeCN), without the need for precious metal-based catalysts or reagents, or the generation of stoichiometric metal byproducts.


2017 ◽  
Vol 68 (1) ◽  
pp. 180-185
Author(s):  
Adriana Maria Andreica ◽  
Lucia Gansca ◽  
Irina Ciotlaus ◽  
Ioan Oprean

Were developed new and practical synthesis of (Z)-7-dodecene-1-yl acetate and (E)-9-dodecene-1-yl acetate. The routes involve, as the key step, the use of the mercury derivative of the terminal-alkyne w-functionalised as intermediate. The synthesis of (Z)-7-dodecene-1-yl acetate was based on a C6+C2=C8 and C8+C4=C12 coupling scheme, starting from 1,6-hexane-diol. The first coupling reaction took place between 1-tert-butoxy-6-bromo-hexane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-oct-7-yne, which is transformed in di[tert-butoxy-oct-7-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromobutane obtaining 1-tert-butoxy-dodec-7-yne. After acetylation and reduction with lithium aluminium hydride of 7-dodecyne-1-yl acetate gave (Z)-7-dodecene-1-yl acetate with 96 % purity. The synthesis of (E)-9-dodecene-1-yl acetate was based on a C8+C2=C10 and C10+C2=C12 coupling scheme, starting from 1,8-octane-diol. The first coupling reaction took place between 1-tert-butoxy-8-bromo-octane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-dec-9-yne, which is transformed in di[tert-butoxy-dec-9-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromoethane obtaining 1-tert-butoxy-dodec-9-yne. After reduction with lithium aluminium hydride of 1-tert-butoxy-(E)-9-dodecene and acetylation was obtained (E)-9-dodecene-1-yl acetate with 97 % purity.


1985 ◽  
Vol 20 (2) ◽  
pp. 36-43 ◽  
Author(s):  
Klaus L.E. Kaiser ◽  
Juan M. Ribo ◽  
Brian M. Zaruk

Abstract This paper gives the results of part of a systematic investigation into contaminant toxicity to Photobacterium phosphoreum in the Microtox™ test. Reported are the toxicity values for 39 para-chloro substituted benzene derivatives of the general formula l-Cl-C6h4-4-X=CH2CH(NH2)COOH, F, SO2NH2, OCH2COOH, CH2COOH, CONHNH2, NHCOCH3, CONH2, CH=CHCOOH, SeOOH, CH2NH2, CH2CH2NH2, NO2, H, CF3, CHO, CH2OH, OH, CH3, CCl3, COCH3, COOH, NH2, SO2C6H5, Cl, CH2COCH3, COCl, CN, OCH3, NCO, NHCH3, I, COC6H5, CH2Cl, SH, CH2SH, NCS, CH2CN and SO2C6H4Cl. Except for the last compound, whose solubility is below the required concentration, the toxicities increase in the presented order with a total range of more than three orders of magnitude. The data are discussed in terms of quantitative structure-toxicity correlations with compound-specific structural parameters. In combination with a previously developed submodel on chlorinated benzenes, phenols, nitrobenzenes and anilines, the observed relationships allow the prediction of the toxicity of some 780 possible chloro derivatives of the general formula C6H5-nClnX, where n=<5 and X is a functional group as listed above.


Sign in / Sign up

Export Citation Format

Share Document