Chloro-free synthesis of LiPF6 using the fluorine-oxygen exchange technique

Author(s):  
Jian Liu ◽  
Yuanli Cai ◽  
Huan Pang ◽  
Bin Cao ◽  
Chengzhi Luo ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 362
Author(s):  
Yabibal Getahun Dessie ◽  
Qi Hong ◽  
Bachirou Guene Lougou ◽  
Juqi Zhang ◽  
Boshu Jiang ◽  
...  

Metal oxide materials are known for their ability to store thermochemical energy through reversible redox reactions. Metal oxides provide a new category of materials with exceptional performance in terms of thermochemical energy storage, reaction stability and oxygen-exchange and uptake capabilities. However, these characteristics are predicated on the right combination of the metal oxide candidates. In this study, metal oxide materials consisting of pure oxides, like cobalt(II) oxide, manganese(II) oxide, and iron(II, III) oxide (Fe3O4), and mixed oxides, such as (100 wt.% CoO, 100 wt.% Fe3O4, 100 wt.% CoO, 25 wt.% MnO + 75 wt.% CoO, 75 wt.% MnO + 25 wt.% CoO) and 50 wt.% MnO + 50.wt.% CoO), which was subjected to a two-cycle redox reaction, was proposed. The various mixtures of metal oxide catalysts proposed were investigated through the thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersive X-ray (EDS), and scanning electron microscopy (SEM) analyses. The effect of argon (Ar) and oxygen (O2) at different gas flow rates (20, 30, and 50 mL/min) and temperature at thermal charging step and thermal discharging step (30–1400 °C) during the redox reaction were investigated. It was revealed that on the overall, 50 wt.% MnO + 50 wt.% CoO oxide had the most stable thermal stability and oxygen exchange to uptake ratio (0.83 and 0.99 at first and second redox reaction cycles, respectively). In addition, 30 mL/min Ar–20 mL/min O2 gas flow rate further increased the proposed (Fe,Co,Mn)Ox mixed oxide catalyst’s cyclic stability and oxygen uptake ratio. SEM revealed that the proposed (Fe,Co,Mn)Ox material had a smooth surface and consisted of polygonal-shaped structures. Thus, the proposed metallic oxide material can effectively be utilized for high-density thermochemical energy storage purposes. This study is of relevance to the power engineering industry and academia.


2011 ◽  
Vol 13 (37) ◽  
pp. 16530 ◽  
Author(s):  
Anja Wedig ◽  
Rotraut Merkle ◽  
Benjamin Stuhlhofer ◽  
Hanns-Ulrich Habermeier ◽  
Joachim Maier ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 23095-23104
Author(s):  
Asim Riaz ◽  
Wojciech Lipiński ◽  
Adrian Lowe

Cerium doping into the V2O5 lattice forms a reversible V2O3/VO redox pair after sequential methane partial oxidation and CO2/H2O splitting reactions and produces syngas (H2, CO) with fast rates and high oxygen exchange capacity.


2021 ◽  
Author(s):  
Shuanglu Zhang ◽  
Atsushi Okamoto ◽  
Taijun Shiba ◽  
Hotaka Hayashi ◽  
Kazuhisa Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document