scholarly journals Metal centered ligand field excited states: Their roles in the design and performance of transition metal based photochemical molecular devices

2011 ◽  
Vol 255 (5-6) ◽  
pp. 591-616 ◽  
Author(s):  
Paul S. Wagenknecht ◽  
Peter C. Ford
2003 ◽  
Vol 68 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Stanislav Záliš ◽  
Antonín Vlček ◽  
Chantal Daniel

This contribution presents the results of the TD-DFT and CASSCF/CASPT2 calculations on [W(CO)4(MeDAB)] (MeDAB = N,N'-dimethyl-1,4-diazabutadiene), [W(CO)4(en)] (en = ethylenediamine), [W(CO)5(py)] (py = pyridine) and [W(CO)5(CNpy)] (CNpy = 4-cyanopyridine) complexes. Contrary to the textbook interpretation, calculations on the model complex [W(CO)4(MeDAB)] and [W(CO)5(CNpy)] show that the lowest W→MeDAB and W→CNpy MLCT excited states are immediately followed in energy by several W→CO MLCT states, instead of ligand-field (LF) states. The lowest-lying excited states of [W(CO)4(en)] system were characterized as W(COeq)2→COax CT excitations, which involve a remarkable electron density redistribution between axial and equatorial CO ligands. [W(CO)5(py)] possesses closely-lying W→CO and W→py MLCT excited states. The calculated energies of these states are sensitive to the computational methodology used and can be easily influenced by a substitution effect. The calculated shifts of [W(CO)4(en)] stretching CO frequencies due to excitation are in agreement with picosecond time-resolved infrared spectroscopy experiments and confirm the occurrence of low-lying M→CO MLCT transitions. No LF electronic transitions were found for either of the complexes studied in the region up to 4 eV.


2015 ◽  
Vol 622 ◽  
pp. 120-123 ◽  
Author(s):  
Amador García-Fuente ◽  
Fanica Cimpoesu ◽  
Harry Ramanantoanina ◽  
Benjamin Herden ◽  
Claude Daul ◽  
...  

2D Materials ◽  
2015 ◽  
Vol 2 (3) ◽  
pp. 035019 ◽  
Author(s):  
Santosh K C ◽  
Chenxi Zhang ◽  
Suklyun Hong ◽  
Robert M Wallace ◽  
Kyeongjae Cho

Sign in / Sign up

Export Citation Format

Share Document