Co-deposition of micro- and nano-sized SnO2 particles in the Zn-matrix composite coatings produced from a Zn-sulphate bath by electroplating

2021 ◽  
Vol 32 ◽  
pp. 100657
Author(s):  
Deepa K ◽  
Arthoba Nayaka Y ◽  
Purushothama H T ◽  
Yathisha R O
2021 ◽  
Vol 405 ◽  
pp. 126676
Author(s):  
Xinliang Xie ◽  
Zhanqiu Tan ◽  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Hongjian Wu ◽  
...  

2021 ◽  
Author(s):  
Saman Sayahlatifi ◽  
Chenwei Shao ◽  
André McDonald ◽  
James David Hogan

Abstract This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).


2014 ◽  
Vol 59 (4) ◽  
pp. 1287-1292 ◽  
Author(s):  
S. Srikomol ◽  
P. Janetaisong ◽  
Y. Boonyongmaneerat ◽  
R. Techapiesancharoenkij

Abstract The effects of current density and Ti particle loading in a plating bath on the morphology and hardness of Ni-Ti composite coatings via an electrochemical-codeposition process were investigated. The Ti-reinforced Ni-matrix composite coatings were codeposited on copper substrates using a Ni-ion electrolytic solution stably suspended with -45 micron Ti particles. Within the current studied range, the coatings’ Ti contents are in the range between 46 and 62 at.%. The morphology appeared to vary with current density. Structures of the Ni-Ti composite coatings produced under low current density conditions revealed denser structures, which is in contrast to the more porous structures noted in the coatings produced under high current density. An initial increase of current density from 100 to 150 mA/cm2 also tends to raise Ti coating content. The reinforcement of Ti particles in the coatings also increased their hardness, which is attributed to the possible role of the embedded Ti particles in hindering matrix deformation. The effect of Ti loading on the coating’s Ti contents was not significant under conditions used in the present study


2000 ◽  
Vol 78 (6) ◽  
pp. 223-226 ◽  
Author(s):  
P. Gyftou ◽  
E.A. Pavlatou ◽  
N. Spyrellis ◽  
K.S. Hatzilyberis

Sign in / Sign up

Export Citation Format

Share Document