Application of the mass action law to describe ion exchange equilibrium in a fixed-bed column

2011 ◽  
Vol 172 (1) ◽  
pp. 312-320 ◽  
Author(s):  
C.E. Borba ◽  
E.A. Silva ◽  
S. Spohr ◽  
G.H.F. Santos ◽  
R. Guirardello
2005 ◽  
Vol 5 (5) ◽  
pp. 67-74 ◽  
Author(s):  
R. Baciocchi ◽  
A. Chiavola ◽  
R. Gavasci

The aim of this work was to develop a quantitative description of the ion exchange equilibria of arsenic on a strong anionic resin, in the presence of nitrates and sulphates. First, the ion exchange equilibrium data of As(V) and NO3− on a strong anionic resin in chloride form were obtained and described with a model based on the mass action law. Namely, assuming ideal behaviour for both solution and resin phase, the thermodynamic constant of the As(V)/Cl− and NO3−/Cl− ion exchange equilibria were estimated by fitting of experimental data. Then, these equilibrium constants were used to predict the ion exchange behaviour of the ternary system As(V)/NO3−/Cl−, providing a rather good agreement with experimental results. The ion exchange equilibria involving sulphate ions were also studied, showing a very high affinity to the resin phase. This behaviour did not allow a quantitative robust modelling of the equilibrium pattern. The results discussed in this paper represent a first step toward the development of a comprehensive modelling of the ion exchange process for the removal of As(V) from surface and groundwater in the presence of competitive, naturally occurring anions.


2020 ◽  
Vol 11 (10) ◽  
pp. 5467-5481 ◽  
Author(s):  
Thomas J. Robshaw ◽  
Keith Bonser ◽  
Glyn Coxhill ◽  
Robert Dawson ◽  
Mark D. Ogden

Abstract This work aims to contribute to addressing the global challenge of recycling and valorising spent potlining; a hazardous solid waste product of the aluminium smelting industry. This has been achieved using a simple two-step chemical leaching treatment of the waste, using dilute lixiviants, namely NaOH, H2O2 and H2SO4, and at ambient temperature. The potlining and resulting leachate were characterised by spectroscopy and microscopy to determine the success of the treatment, as well as the morphology and mineralogy of the solid waste. This confirmed that the potlining samples were a mixture of contaminated graphite and refractory materials, with high variability of composition. A large quantity of fluoride was solublised by the leaching process, as well as numerous metals, some of them toxic. The acidic and caustic leachates were combined and the aluminium and fluoride components were selectively extracted, using a modified ion-exchange resin, in fixed-bed column experiments. The resin performed above expectations, based on previous studies, which used a simulant feed, extracting fluoride efficiently from leachates of significantly different compositions. Finally, the fluoride and aluminium were coeluted from the column, using NaOH as the eluent, creating an enriched aqueous stream, relatively free from contaminants, from which recovery of synthetic cryolite can be attempted. Overall, the study accomplished several steps in the development of a fully-realised spent potlining treatment system. Graphic Abstract


1995 ◽  
Vol 30 (13) ◽  
pp. 2731-2746 ◽  
Author(s):  
Run-Tun Huang ◽  
Teh-Liang Chen ◽  
Hung-Shan Weng

2013 ◽  
Vol 48 (7) ◽  
pp. 1102-1110 ◽  
Author(s):  
T. D'Arisbo ◽  
E. A. Silva ◽  
C. E. Borba ◽  
I. C. Ostroski ◽  
P. A. Arroyo ◽  
...  

2012 ◽  
Vol 34 (1) ◽  
Author(s):  
Rafael Luan Sehn Canevesi ◽  
Elizeu Avelino Zanella Junior ◽  
Rodrigo Augusto Barella ◽  
Tiago Dias Martins ◽  
Marcos Flávio Pinto Moreira ◽  
...  

2021 ◽  
Vol 252 ◽  
pp. 1-10
Author(s):  
Maria Ponomareva ◽  
Olga Cheremisina ◽  
Yulia Mashukova ◽  
Elena Lukyantseva

The issues of complex processing of mineral resources are relevant due to the depletion of available raw materials. So, it is necessary to involve technological waste, generated during the processing of raw materials, to obtain valuable components. In the process flow of apatite concentrate treatment using the sulfuric acid method, a large amount of phosphogypsum is produced with an average content of light rare earth metals (REMs) reaching 0.032-0.45 %. When phosphogypsum is treated with sulfuric acid solutions, a part of REMs is transferred to the sulfate solution, from which it can be extracted by means of ion exchange method. The study focuses on sorption recovery of light REMs (praseodymium, neodymium and samarium) in the form of anionic sulfate complexes of the composition [ln(SO4)2]– on polystyrene anion exchanger AN-31. The experiments were performed under static conditions at a liquid-to-solid ratio of 1:1, pH value of 2, temperature of 298 K and initial REM concentration in the solutions ranging from 0.83 to 226.31 mmol/kg. Thermodynamic description of sorption isotherms was carried out by the method based on linearization of the mass action equation, modified for the ion exchange reaction. As a result of performed calculations, the authors obtained the constants of ion exchange equilibrium for Pr, Nd and Sm, as well as the values of the change in the Gibbs energy for the ion exchange of REM sulfate complexes on the AN-31 anion exchanger and the values of total capacity of the anion exchanger. Calculated separation factors indicated low selectivity of AN-31 anionite exchanger for light REMs; however, the anion exchanger is suitable for effective recovery of a sum of light REMs. Based on the average value of ion exchange equilibrium constant for light REMs, parameters of a sorption unit with a fluidized bed of anion exchanger were estimated.


Sign in / Sign up

Export Citation Format

Share Document