A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition

2017 ◽  
Vol 321 ◽  
pp. 67-75 ◽  
Author(s):  
M. Gopi Kiran ◽  
Kannan Pakshirajan ◽  
Gopal Das
2004 ◽  
pp. 213-221
Author(s):  
N Messner ◽  
K Reardon ◽  
A Pruden ◽  
L Pereyra ◽  
C Sans Mazón

2020 ◽  
Vol 81 (9) ◽  
pp. 1797-1827 ◽  
Author(s):  
Ya-Nan Xu ◽  
Yinguang Chen

Abstract Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.


2019 ◽  
Vol 168 ◽  
pp. 88-99 ◽  
Author(s):  
jia Yan ◽  
Siji Wang ◽  
Kengqiang Zhong ◽  
Haoshen Hu ◽  
Zixuan Chen ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1937
Author(s):  
Thuong Thi Nguyen ◽  
Satoshi Soda ◽  
Akihiro Kanayama ◽  
Takaya Hamai

This study demonstrated heavy metal removal from neutral mine drainage of a closed mine in Kyoto prefecture in pilot-scale constructed wetlands (CWs). The CWs filled with loamy soil and limestone were unplanted or planted with cattails. The hydraulic retention time (HRT) in the CWs was shortened gradually from 3.8 days to 1.2 days during 3.5 months of operation. A short HRT of 1.2 days in the CWs was sufficient to achieve the effluent standard for Cd (0.03 mg/L). The unplanted and the cattail-planted CWs reduced the average concentrations of Cd from 0.031 to 0.01 and 0.005 mg/L, Zn from 0.52 to 0.14 and 0.08 mg/L, Cu from 0.07 to 0.04 and 0.03 mg/L, and As from 0.011 to 0.006 and 0.006 mg/L, respectively. Heavy metals were removed mainly by adsorption to the soil in both CWs. The biological concentration factors in cattails were over 2 for Cd, Zn, and Cu. The translocation factors of cattails for all metals were 0.5–0.81. Sulfate-reducing bacteria (SRB) belonging to Deltaproteobacteria were detected only from soil in the planted CW. Although cattails were a minor sink, the plants contributed to metal removal by rhizofiltration and incubation of SRB, possibly producing sulfide precipitates in the rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document