scholarly journals Transfer learning for solvation free energies: From quantum chemistry to experiments

2021 ◽  
Vol 418 ◽  
pp. 129307
Author(s):  
Florence H. Vermeire ◽  
William H. Green
2005 ◽  
Vol 70 (11) ◽  
pp. 1769-1786 ◽  
Author(s):  
Luc A. Vannier ◽  
Chunxiang Yao ◽  
František Tureček

A computational study at correlated levels of theory is reported to address the structures and energetics of transient radicals produced by hydrogen atom abstraction from C-1, C-2, C-3, C-4, C-5, O-1, O-3, and O-5 positions in 2-deoxyribofuranose in the gas phase and in aqueous solution. In general, the carbon-centered radicals are found to be thermodynamically and kinetically more stable than the oxygen-centered ones. The most stable gas-phase radical, 2-deoxyribofuranos-5-yl (5), is produced by H-atom abstraction from C-5 and stabilized by an intramolecular hydrogen bond between the O-5 hydroxy group and O-1. The order of radical stabilities is altered in aqueous solution due to different solvation free energies. These prefer conformers that lack intramolecular hydrogen bonds and expose O-H bonds to the solvent. Carbon-centered deoxyribose radicals can undergo competitive dissociations by loss of H atoms, OH radical, or by ring cleavages that all require threshold dissociation or transition state energies >100 kJ mol-1. This points to largely non-specific dissociations of 2-deoxyribose radicals when produced by exothermic hydrogen atom abstraction from the saccharide molecule. Oxygen-centered 2-deoxyribose radicals show only marginal thermodynamic and kinetic stability and are expected to readily fragment upon formation.


2006 ◽  
Vol 419 (1-3) ◽  
pp. 240-244 ◽  
Author(s):  
Takumi Hori ◽  
Hideaki Takahashi ◽  
Masayoshi Nakano ◽  
Tomoshige Nitta ◽  
Weitao Yang

2014 ◽  
Vol 28 (3) ◽  
pp. 135-150 ◽  
Author(s):  
David L. Mobley ◽  
Karisa L. Wymer ◽  
Nathan M. Lim ◽  
J. Peter Guthrie

2001 ◽  
Vol 105 (28) ◽  
pp. 6704-6709 ◽  
Author(s):  
David M. Huang ◽  
Phillip L. Geissler ◽  
David Chandler

Sign in / Sign up

Export Citation Format

Share Document