scholarly journals An α Helix to β Barrel Domain Switch Transforms the Transcription Factor RfaH into a Translation Factor

Cell ◽  
2012 ◽  
Vol 150 (2) ◽  
pp. 291-303 ◽  
Author(s):  
Björn M. Burmann ◽  
Stefan H. Knauer ◽  
Anastasia Sevostyanova ◽  
Kristian Schweimer ◽  
Rachel A. Mooney ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lise Friis Christensen ◽  
Lasse Staby ◽  
Katrine Bugge ◽  
Charlotte O’Shea ◽  
Birthe B. Kragelund ◽  
...  

AbstractRadical-Induced Cell Death1 (RCD1) functions as a cellular hub interacting with intrinsically disordered transcription factor regions, which lack a well-defined three-dimensional structure, to regulate plant stress. Here, we address the molecular evolution of the RCD1-interactome. Using bioinformatics, its history was traced back more than 480 million years to the emergence of land plants with the RCD1-binding short linear motif (SLiM) identified from mosses to flowering plants. SLiM variants were biophysically verified to be functional and to depend on the same RCD1 residues as the DREB2A transcription factor. Based on this, numerous additional members may be assigned to the RCD1-interactome. Conservation was further strengthened by similar intrinsic disorder profiles of the transcription factor homologs. The unique structural plasticity of the RCD1-interactome, with RCD1-binding induced α-helix formation in DREB2A, but not detectable in ANAC046 or ANAC013, is apparently conserved. Thermodynamic analysis also indicated conservation with interchangeability between Arabidopsis and soybean RCD1 and DREB2A, although with fine-tuned co-evolved binding interfaces. Interruption of conservation was observed, as moss DREB2 lacked the SLiM, likely reflecting differences in plant stress responses. This whole-interactome study uncovers principles of the evolution of SLiM:hub-interactions, such as conservation of α-helix propensities, which may be paradigmatic for disorder-based interactomes in eukaryotes.


2018 ◽  
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

ABSTRACTThe phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein (EREBP), a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, is critical for the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


Biochemistry ◽  
2004 ◽  
Vol 43 (11) ◽  
pp. 3008-3013 ◽  
Author(s):  
Raj Kumar ◽  
Russell Betney ◽  
Jianquan Li ◽  
E. Brad Thompson ◽  
Iain J. McEwan

FEBS Journal ◽  
2018 ◽  
Vol 285 (20) ◽  
pp. 3786-3800 ◽  
Author(s):  
Yun Mi Kwak ◽  
Sun Cheol Park ◽  
Hye‐won Na ◽  
Seung Goo Kang ◽  
Geun‐Shik Lee ◽  
...  

2020 ◽  
Vol 104 (4-5) ◽  
pp. 483-498
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

Abstract The phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein, a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, might involve in the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


2002 ◽  
Vol 156 (5) ◽  
pp. 817-828 ◽  
Author(s):  
Anne Brunet ◽  
Fumihiko Kanai ◽  
Justine Stehn ◽  
Jian Xu ◽  
Dilara Sarbassova ◽  
...  

14-3-3 proteins regulate the cell cycle and prevent apoptosis by controlling the nuclear and cytoplasmic distribution of signaling molecules with which they interact. Although the majority of 14-3-3 molecules are present in the cytoplasm, we show here that in the absence of bound ligands 14-3-3 homes to the nucleus. We demonstrate that phosphorylation of one important 14-3-3 binding molecule, the transcription factor FKHRL1, at the 14-3-3 binding site occurs within the nucleus immediately before FKHRL1 relocalization to the cytoplasm. We show that the leucine-rich region within the COOH-terminal α-helix of 14-3-3, which had been proposed to function as a nuclear export signal (NES), instead functions globally in ligand binding and does not directly mediate nuclear transport. Efficient nuclear export of FKHRL1 requires both intrinsic NES sequences within FKHRL1 and phosphorylation/14-3-3 binding. Finally, we present evidence that phosphorylation/14-3-3 binding may also prevent FKHRL1 nuclear reimport. These results indicate that 14-3-3 can mediate the relocalization of nuclear ligands by several mechanisms that ensure complete sequestration of the bound 14-3-3 complex in the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document