scholarly journals CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis

Cell Reports ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 108993
Author(s):  
Carlotta Tacconi ◽  
Catharina D. Commerford ◽  
Lothar C. Dieterich ◽  
Simon Schwager ◽  
Yuliang He ◽  
...  
2011 ◽  
Author(s):  
Masayuki Nagahashi ◽  
Omar M. Rashid ◽  
Subramanian Ramachandran ◽  
Sheldon Milstien ◽  
Sarah Spiegel ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 148-158 ◽  
Author(s):  
Xi Xiaoxia ◽  
Sun Jing ◽  
Xi Dongbin ◽  
Tian Yonggang ◽  
Zhang Jingke ◽  
...  

Background: Realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types. We previously showed that realgar nanoparticles (nano-realgar) had significant antileukemia, anti-lung cancer and anti-liver cancer effects. In addition, the anti-tumor effects of nanorealgar were significantly better than those of ordinary realgar. Objective: To explore the inhibitory effects and molecular mechanisms of nano-realgar on the migration, invasion and metastasis of mouse breast cancer cells. Methods: Wound-healing migration assays and Transwell invasion assays were carried out to determine the effects of nano-realgar on breast cancer cell (4T1) migration and invasion. The expression levels of matrix metalloproteinase (MMP)-2 and -9 were measured by Western blot. A murine breast cancer metastasis model was established, administered nano-realgar for 32 days and monitored for tumor growth and metastasis by an in vivo optical imaging system. Finally, living imaging and hematoxylin and eosin (HE) staining were used to measure the morphology and pathology of lung and liver cancer cell metastases, respectively. Angiogenesis was assessed by CD34 immunohistochemistry. Results: Nano-realgar significantly inhibited the migration and invasion of breast cancer 4T1 cells and the expression of MMP-2 and -9. Meanwhile, nano-realgar effectively suppressed the abilities of tumor growth, metastasis and angiogenesis in the murine breast cancer metastasis model in a time- and dosedependent manner. Conclusion: Nano-realgar significantly inhibited migration and invasion of mouse breast cancer cells in vitro as well as pulmonary and hepatic metastasis in vivo, which may be closely correlated with the downexpression of MMP-2 and -9 and suppression of tumor neovascularization.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Tomoko Okada ◽  
Atsushi Kurabayashi ◽  
Nobuyoshi Akimitsu ◽  
Mutsuo Furihata

We previously established 4T1E/M3 highly bone marrow metastatic mouse breast cancer cells through in vivo selection of 4T1 cells. But while the incidence of bone marrow metastasis of 4T1E/M3 cells was high (~80%) when injected intravenously to mice, it was rather low (~20%) when injected subcutaneously. Therefore, using 4T1E/M3 cells, we carried out further in vitro and in vivo selection steps to establish FP10SC2 cells, which show a very high incidence of metastasis to lungs (100%) and spines (85%) after subcutaneous injection into mice. qRT-PCR and western bolt analysis revealed that cadherin-17 gene and protein expression were higher in FP10SC2 cells than in parental 4T1E/M3 cells. In addition, immunostaining revealed the presence of cadherin-17 at sites of bone marrow and lung metastasis after subcutaneous injection of FP10SC2 cells into mice. Suppressing cadherin-17 expression in FP10SC2 cells using RNAi dramatically decreased the cells’ anchorage-independent growth and migration in vitro and their metastasis to lung and bone marrow in vivo. These findings suggest that cadherin-17 plays a crucial role in mediating breast cancer metastasis to bone marrow.


Cytotherapy ◽  
2009 ◽  
Vol 11 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Bo Sun ◽  
Kyoung-Hwan Roh ◽  
Jeong-Ran Park ◽  
Sae-Rom Lee ◽  
Sang-Bum Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document