Improved Mass Transfer Performance of Membrane units in a Toroidal Helical Pipe—reduction of concentration polarization by secondary flows

Author(s):  
C. Zhang ◽  
Andrew N. Okafor ◽  
Hiba Malik ◽  
K.D.P. Nigam ◽  
K. Nandakumar
Author(s):  
S. Han ◽  
R. J. Goldstein

The secondary flows, including passage and other vortices in a turbine cascade cause significant aerodynamic losses and thermal gradients. Leading-edge modification of the blade has drawn considerable attention as it has been shown to reduce the secondary flows. However, the heat transfer performance of a leading-edge modified blade has not been investigated thoroughly. Since a fillet at the leading edge blade is reported to reduce the aerodynamic loss significantly, the naphthalene sublimation technique with a fillet geometry is used to study local heat (mass) transfer performance in a simulated turbine cascade. The present paper compares Sherwood number distributions on an endwall with a simple blade and a similar blade having modified leading-edge by adding a fillet. With the modified blades, a horseshoe vortex is not observed and the passage vortex is delayed or not observed for different turbulence intensities. However, near the blade trailing edge the passage vortex has gained as much strength as with the simple blade for low turbulence intensity. Near the leading edge on the pressure and the suction surface, higher mass transfer regions are observed with the fillets. Apparently the corner vortices are intensified with the leading-edge modified blade.


2005 ◽  
Vol 128 (4) ◽  
pp. 798-813 ◽  
Author(s):  
S. Han ◽  
R. J. Goldstein

The secondary flows, including passage and other vortices in a turbine cascade, cause significant aerodynamic losses and thermal gradients. Leading edge modification of the blade has drawn considerable attention as it has been shown to reduce the secondary flows. However, the heat transfer performance of a leading edge modified blade has not been investigated thoroughly. Since a fillet at the leading edge blade is reported to reduce the aerodynamic loss significantly, the naphthalene sublimation technique with a fillet geometry is used to study local heat (mass) transfer performance in a simulated turbine cascade. The present paper compares Sherwood number distributions on an endwall with a simple blade and a similar blade having a modified leading edge by adding a fillet. With the modified blades, a horseshoe vortex is not observed and the passage vortex is delayed or not observed for different turbulence intensities. However, near the blade trailing edge the passage vortex has gained as much strength as with the simple blade for low turbulence intensity. Near the leading edge on the pressure and the suction surface, higher mass transfer regions are observed with the fillets. Apparently the corner vortices are intensified with the leading edge modified blade.


Author(s):  
Shuo Yang ◽  
Jilong Zhang ◽  
Jiaxing Xue ◽  
Qingpeng Wu ◽  
Qunsheng Li ◽  
...  

2021 ◽  
Author(s):  
Sukanya Nakrak ◽  
Tarabordin Yurata ◽  
Benjapon Chalermsinsuwan ◽  
Paitoon Tontiwachwuthikul ◽  
Teerawat Sema

2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


Author(s):  
Luhong Zhang ◽  
Zhijie Li ◽  
Na Yang ◽  
Bin Jiang ◽  
Haifeng Cong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document