High temperature mechanical properties of Al2O3/TiC micro–nano-composite ceramic tool materials

2013 ◽  
Vol 39 (8) ◽  
pp. 8877-8883 ◽  
Author(s):  
Zengbin Yin ◽  
Chuanzhen Huang ◽  
Bin Zou ◽  
Hanlian Liu ◽  
Hongtao Zhu ◽  
...  
2015 ◽  
Vol 41 (3) ◽  
pp. 3381-3389 ◽  
Author(s):  
Xianhua Tian ◽  
Jun Zhao ◽  
Yintao Wang ◽  
Feng Gong ◽  
Wenzhen Qin ◽  
...  

2010 ◽  
Vol 154-155 ◽  
pp. 1356-1360 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Jing Jie Zhang ◽  
Zhen Yu Jiang

A new ZrO2 nano-composite ceramic tool and die material was prepared with vacuum hot pressing technique. The effects of sintering parameters on the nano-composite ceramic tool and die materials were studied. The results indicated that the mechanical properties of ZrO2 nano-composite ceramic tool and die material with the additions of TiB2 and Al2O3 are higher than that of the pure ZrO2 ceramic material. Sintering at 1100 for 120min could improve the density and mechanical properties of ZrO2 nano-composite ceramic material. The flexural strength, fracture toughness and hardness with the optimum sintering parameters can reach 878MPa, 9.54MPa•m1/2 and 13.48GPa, respectively, obviously higher than that with non-optimum sintering parameters.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2013 ◽  
Vol 39 (4) ◽  
pp. 4253-4262 ◽  
Author(s):  
Zengbin Yin ◽  
Chuanzhen Huang ◽  
Bin Zou ◽  
Hanlian Liu ◽  
Hongtao Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document