indentation test
Recently Published Documents


TOTAL DOCUMENTS

715
(FIVE YEARS 137)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 1048 ◽  
pp. 254-260
Author(s):  
Kaushik V. Prasad ◽  
H. Adarsha

Al2O3, Al2O3-10%CeO2 and Al2O3 – 20% CeO2 coatings were deposited on Mg AZ91 alloy by High Velocity Oxy Fuel (HVOF) process. The microstructure of deposited coatings was characterized by scanning electron microscopy and x-ray diffraction. Nano-indentation tests were performed on deposited coatings to determine its load bearing capacity and elastic recovery. Al2O3 coatings exhibited coarse grain structure with porous sites. While addition of CeO2 promoted grain refinement in the coatings. A load of 100mN was applied on all the samples for nano-indentation test. Coating with 20%CeO2 exhibited maximum load bearing capacity of 98.7mN with elastic recovery displacement of 1000 nm.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
He Xue ◽  
Jinxuan He ◽  
Jianlong Zhang ◽  
Yuxuan Xue

AbstractThe hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure, and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test. To accurately get actual material mechanical properties in the local region of structure, a micro-indentation test system incorporated by an electronic universal material test device has been established. An indenter displacement sensor and a group of special micro-indenter assemblies are established. A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study. Based on the above test system and analysis platform, an approach to obtaining material mechanical properties in the local region of structures is proposed and established. The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under different elongations. The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance. Compared with the tensile test results, the deviations of material mechanical parameters, such as hardness H, the hardening exponent n, the yield strength σy, and others are within 5% obtained through the indentation test and the finite element analysis. It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7325
Author(s):  
Esteban Astudillo-Ortiz ◽  
Pedro S. Babo ◽  
Rui L. Reis ◽  
Manuela E. Gomes

Dental pulp tissue engineering (TE) endeavors to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface’s proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration. The hydrogels’ working (wT) and setting (sT) times, the adhesion to the dentine walls, the hydrogel’s microstructure, and the delivery of human dental pulp cells (DPCs) were studied in vitro. Hydrogels incorporating PL showed a suitable wT and sT and a porous microstructure. The tensile tests showed that the breaking point occurs after 4.3106 ± 1.8677 mm deformation, while in the indentation test after 1.4056 ± 0.3065 mm deformation. Both breaking points occur in the hydrogel extension. The HA/PL hydrogels exhibited supportive properties and promoted cell migration toward dentin surfaces in vitro. Overall, these results support using PL-laden HA injectable hydrogels (HA/PL) as a biomaterial for DPCs encapsulation, thereby displaying great clinical potential towards endodontic regenerative therapies.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1415
Author(s):  
Martin Fenker ◽  
Martin Balzer ◽  
Sabine Kellner ◽  
Tomas Polcar ◽  
Andreas Richter ◽  
...  

The coating system MoN-Ag is an interesting candidate for industrial applications as a low friction coating at elevated temperatures, due to the formation of lubricous molybdenum oxides and silver molybdates. Film deposition was performed by high-power impulse magnetron sputtering and direct current magnetron sputtering. To facilitate a future transfer to industry Mo-Ag composite targets have been sputtered in Ar/N2 atmosphere. The chemical composition of the deposited MoN-Ag films has been investigated by wavelength dispersive X-ray spectroscopy. Morphology and crystallographic phases of the films were studied by scanning electron microscopy and X-ray diffraction. To obtain film hardness in relation to Ag content and bias voltage, the instrumented indentation test was applied. Pin-on-disc tribological tests have been performed at room temperature and at high temperature (HT, 450 °C). Samples from HT tests have been analyzed by Raman measurements to identify possible molybdenum oxide and/or silver molybdate phases. At low Ag contents (≤7 at.%), coatings with a hardness of 18–31 GPa could be deposited. Friction coefficients at HT decreased with increasing Ag content. After these tests, Raman measurements revealed the MoO3 phase on all samples and the Ag2Mo4O13 phase for the highest Ag contents (~23–26 at.%).


Author(s):  
Bowen Si ◽  
Zhiqiang Li ◽  
Gesheng Xiao ◽  
Xuefeng Shu

In this study, a dynamic indentation test method based on the split Hopkinson pressure bar is proposed to obtain the dynamic parameters of Ludwik power law constitutive, namely, Young’s modulus E, strength coefficient K, and strain hardening index n by analyzing dynamic indentation load-indentation depth curve obtained from the theories relating to the Hopkinson pressure bar. The important parameters, namely, loading curvature C and transformation factor [Formula: see text], are invoked to examine the dynamic indentation response results in a wide range of target material parameters. Finite element calculation results are processed through simulation of dynamic indentation response with broad material parameters. Furthermore, the analytical method is used to fit simulation results to obtain the analytical equations for elastic–plastic parameters and curvature parameters for the subsequent analysis. The analytical equation of forward model to predict dynamic indentation response parameter–loading curvature C of a known material is proposed. Then, the elastic–plastic parameters of unknown materials (according to Ludwik power law) are obtained by substituting the dynamic indentation response parameters into an inverse analytical equation under the two types of half-cone angle indenters. The method is verified by other typical materials, which shows that the dynamic indentation test based on the split Hopkinson pressure bar can obtain sufficient conditions to obtain dynamic mechanical properties of target materials.


Author(s):  
Esteban Astudillo-Ortiz ◽  
Pedro S Babo ◽  
Rui L Reis ◽  
Manuela E Gomes

Dental pulp tissue engineering (TE) quests to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface's proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration. The hydrogels' working (wT) and setting (sT) times, the adhesion to the dentine walls, the hydrogel's microstructure, and the delivery of human Dental Pulp Cells (DPCs) were studied in vitro. Hydrogels incorporating PL showed a suitable wT and sT and a porous microstructure. The tensile tests showed that the breaking point occurs after 4.13 mm deformation. While in the indentation test after 1.3 mm deformation. Both breaking points occur in the hydrogel extension. The HA/PL hydrogels exhibited supportive properties and promoted cell migration toward dentin surfaces in vitro. Overall, these results support using PL-laden HA injectable hydrogels (HA/PL) as a biomaterial for DPCs encapsulation, thereby displaying great clinical potential towards endodontic regenerative therapies.


Author(s):  
Ramakant Rana ◽  
◽  
Lucky Krishnia ◽  
R.S. Walia ◽  
Qasim Murtaza ◽  
...  

In this paper a self-developed polycrystalline diamond coating was done on tungsten carbide (WC) tool insets by using simple thermal chemical vapor deposition technique. The growth of these diamond films has been carried out at ~900 ºC temperature. The as-grown polycrystalline diamond films on the surface of tungsten carbide tool inserts have been characterized using Raman spectrometer and scanning electron microscope (SEM). The morphological studies reveal that the as-grown diamond films are of high crystalline quality. The as-grown diamond films possess compressive stress. The micro-hardness indentation test of the as-grown diamond films on WC tool inserts and bare have also been done and it has been found that the Vicker’s hardness of the as-grown diamond WC tool inserts is found to be 1423.32 HV which is 29% better than the un-coated tools.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1646
Author(s):  
Alejandro Obregon ◽  
Jon Mikel Sanchez ◽  
David Eguizabal ◽  
Jose Carlos Garcia ◽  
Gurutze Arruebarrena ◽  
...  

In the context of the development of new lightweight materials, Al-alloyed cast irons have a great potential for reducing the weight of the different part of the vehicles in the transport industry. The correlation of the amount of Al and its effect in the microstructure of cast irons is not completely well established as it is affected by many factors such as chemical composition, cooling rate, etc. In this work, four novel lightweight cast irons were developed with different amounts of Al (from 0 wt. % to 15 wt. %). The alloys were manufactured by an easily scalable and affordable gravity casting process in an induction furnace, and casted in a resin-bonded sand mold. The microstructural evolution as a function of increasing Al content by different microstructural characterization techniques was studied. The hardness of the cast irons was measured by the Vickers indentation test and correlated with the previously characterized microstructures. In general, the microstructural evolution shows that the perlite content decrease with the increment of wt. % of Al. The opposite occurs with the ferrite content. In the case of graphite, a slight increment occurs with 2 wt. % of Al, but a great decrease occurs until 15 wt. % of Al. The addition of Al promotes the stabilization of ferrite in the studied alloys. The hardness obtained varied from 235 HV and 363 HV in function of the Al content. The addition of Al increases the hardness of the studied cast irons, but not gradually. The alloy with the highest hardness is the alloy containing 7 wt. % Al, which is correlated with the formation of kappa-carbides and finer perlite.


Sign in / Sign up

Export Citation Format

Share Document