In-situ X-ray diffraction study on the structural evolutions of oxidized fluorophosphates as anode materials for lithium-ion batteries

2014 ◽  
Vol 40 (7) ◽  
pp. 9107-9120 ◽  
Author(s):  
Xiaoting Lin ◽  
Rui Ma ◽  
Lianyi Shao ◽  
Miao Shui ◽  
Kaiqiang Wu ◽  
...  
CrystEngComm ◽  
2015 ◽  
Vol 17 (44) ◽  
pp. 8500-8504 ◽  
Author(s):  
Nikolas Oehl ◽  
Guido Schmuelling ◽  
Martin Knipper ◽  
Richard Kloepsch ◽  
Tobias Placke ◽  
...  

In situ X-ray diffraction was performed to study the formation of the α-Sn structure in nanocrystalline Sn-based electrodes.


2019 ◽  
Vol 92 (7) ◽  
pp. 1013-1019 ◽  
Author(s):  
P. A. Novikov ◽  
A. E. Kim ◽  
K. A. Pushnitsa ◽  
Wang Quingsheng ◽  
M. Yu. Maksimov ◽  
...  

CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7463-7470 ◽  
Author(s):  
Kyu-Young Park ◽  
Hyungsub Kim ◽  
Seongsu Lee ◽  
Jongsoon Kim ◽  
Jihyun Hong ◽  
...  

In this paper, the structural evolution of Li(Mn1/3Fe1/3Co1/3)PO4, which is a promising multi-component olivine cathode materials, is investigated using combined in situ high-temperature X-ray diffraction and flux neutron diffraction analyses at various states of charge.


2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 328-328
Author(s):  
Scott A Speakman ◽  
Marco Sommariva ◽  
Milen Gateshki ◽  
Fabio Masiello ◽  
Thomas Degen

2020 ◽  
Vol 20 (3) ◽  
pp. 1740-1748
Author(s):  
Yi-Ni Hu ◽  
Zi-Han Lin ◽  
Fei-Xia Min ◽  
Fei Teng ◽  
Hui-Min Wu ◽  
...  

Pure CuC2O4·xH2O and CuC2O4·xH2O/carbon nanotubes (CNTs) composites are synthesized by a low-temperature hydrothermal process. The structure and morphology of the products are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and Raman spectrum. The results demonstrate that the as-prepared CuC2O4·xH2O takes on a microsphere-like morphology, all CuC2O4·xH2O/CNTs nanocomposites are constructed by the intertwining of tabular CuC2O4·xH2O nanoparticles (NPs) and CNTs to form a tanglesome net. When evaluated as an anode materials for lithium ion batteries (LIBs), all CuC2O4·xH2O/CNTs electrodes possess higher reversible discharge capacities (more than 1000 mAh g-1) than the pure CuC2O4·xH2O, up to 200th cycle at a current density of 100 mA g-1. The results illustrate that the addition of CNTs can enhance the electrochemical performance of CuC2O4·xH2O. Overall, CuC2O4·xH2O/CNTs composite can be a promising candidate used as a promising anode for LIBs.


Sign in / Sign up

Export Citation Format

Share Document