Experimental investigation on surface behaviour of submerged arc welding fluxes using basic flux system

2020 ◽  
Vol 46 (6) ◽  
pp. 8111-8121 ◽  
Author(s):  
Lochan Sharma ◽  
Jagdish Kumar ◽  
Rahul Chhibber
Author(s):  
Lochan Sharma ◽  
Rahul Chhibber

Submerged arc welding is widely used in pipeline manufacturing due to higher efficiency as compared to the other welding processes. In present study, TiO2-SiO2-CaO and SiO2-CaO-Al2O3–based submerged arc welding fluxes were developed for joining of linepipe steel. Twenty-one fluxes were formulated based on mixture design methodology. Fluxes were analysed using X-ray florescence (XRF), thermogravimetric, differential-scanning calorimetry, Hot-disc and X-ray diffraction (XRD) techniques. The structural behaviour of rutile basic fluxes were analysed using Fourier transformed infrared spectroscopy (FTIR). Thermo-gravimetric analysis and differential scanning calorimetry were performed from 25 ℃ to 900 ℃ in order to determine the thermal stability and change in enthalpy of fluxes. Thermal conductivity, thermal diffusivity and specific heat of each flux were evaluated by hot disc technique. The density and grain fineness number for flux particles was evaluated at room temperature. Multi objective optimisation was performed to derive the optimised flux formulations. Individual effect of all the mixture constituents is rarely observed on the physicochemical properties of fluxes as compared to the binary and ternary mixture effects. The binary compositions significantly affect the density. TiO2-CaO is the most effective binary mixture which has increasing effect on density while all remaining binary mixture constituents have decreasing effect. The weight loss of fluxes observed during thermogravimetric analysis is affected by binary and ternary mixture constituents. Both binary and ternary flux mixtures affect change in enthalpy observed during differential scanning calorimetry. SiO2.Al2O3 is the only most effective binary mixture constituent of flux having increasing effect on thermal conductivity. Binary mixture constituents TiO2.CaF2, SiO2.Al2O3 and CaO.Al2O3 are the most effective and having synergistic effect on thermal diffusivity.


Author(s):  
Lochan Sharma ◽  
Rahul Chhibber

The present study aims at investigating the effect of submerged arc welding fluxes for enhanced corrosion resistance of structural steel welds. By varying the basicity index of submerged arc welding fluxes the corrosion resistance and mechanical properties of weld metal such as tensile strength, impact strength, microhardness in submerged arc weldments were evaluated. The result shows that with the increase in bascity index tensile strength of weld specimen reduced while impact strength and microhardness value increased. Maximum microhardness (288 HV) was observed for flux 2 while base metal show minimum microhardness value (205 HV). Flux 5 gives maximum impact strength (94.17 J) as compared to the base metal (80 J). This is due to the reduced content of oxygen in weld metal which increases the weld metal impact toughness. Corrosion resistance of weld specimen increased as compared to the base metal. Ductile fracture mode and shear lip or tears were observed in the weld zone. Shear dimples and shear lips were more severe in base metal as well as weld metal impact specimens due to the rapid effect of external forces on the impact test. The banded microstructure of delta ferrite and austenite was observed in the base metal. Fine grains of ferrite and pearlite at the center and edges were present in the weld zone.


2013 ◽  
Vol 18 (4) ◽  
pp. 314-321 ◽  
Author(s):  
Leonid Zhdanov ◽  
Vladyslav Kovalenko ◽  
Nataliya Strelenko ◽  
Yevgenia Chvertko

A method of settlement of the process of thermal dissociation of oxides in reaction zone during the submerged arc welding and welding deposition is presented. Combined non-linear equations for definition of gas-vapour mixture composition were developed. They describe the dissociation of MeO, MeO2 and Me2O3 types of oxides. Calculations of the processes of oxide dissociation were performed for the oxides that are commonly included into welding fluxes. Their results and analysis are presented. The method proposed appeared to be adequate and applicable for analysis of processes during submerged arc operation that run in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document