Digital light processing of complex-shaped 3D-zircon (ZrSiO4) ceramic components from a photocurable polysiloxane/ZrO2 slurry

Author(s):  
Chong He ◽  
Yueqi Cao ◽  
Cong Ma ◽  
Xinger Liu ◽  
Feng Hou ◽  
...  
2021 ◽  
Vol 47 (3) ◽  
pp. 3892-3900
Author(s):  
Sophie Cailliet ◽  
Marilyne Roumanie ◽  
Céline Croutxé-Barghorn ◽  
Guillaume Bernard-Granger ◽  
Richard Laucournet

Author(s):  
Mehdi Kazemi ◽  
Abdolreza Rahimi

Generally, interactions at surface asperities are the cause of wear. Two-Thirds of wear in industry occurs because of the abrasive or adhesive mechanisms. This research presents an analytical model for abrasion of additive manufactured Digital Light Processing products using pin-on-disk method. Particularly, the relationship between abrasion volume, normal load, and surface asperities’ angle is investigated. To verify the proposed mathematical model, the results of this model are verified with the practical experiments. Results show that the most influential parameters on abrasion rate are normal load and surface’s normal angle. Abrasion value increases linearly with increasing normal load. The maximum abrasion value occurs when the surface’s normal angle during fabrication is 45°. After the asperities are worn the abrasion volume is the same for all specimens with different surface’s normal angle. Though layer thickness does not directly affect the wear rate, but surface roughness tests show that layer thickness has a great impact on the quality of the abraded surface. When the thickness of the layers is high, the abraded surface has deeper valleys, and thus has a more negative skewness. This paper presents an original approach in abrasion behavior improvement of DLP parts which no research has been done on it so far; thus, bringing the AM one step closer to maturity.


2021 ◽  
Vol 23 ◽  
pp. 101005
Author(s):  
Kai Huang ◽  
Hamada Elsayed ◽  
Giorgia Franchin ◽  
Paolo Colombo

2021 ◽  
pp. 2001475
Author(s):  
Ying Sun ◽  
Ming Li ◽  
Yanlin Jiang ◽  
Bohang Xing ◽  
Minhao Shen ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yifan Li ◽  
Ronghuan Wu ◽  
Li Yu ◽  
Miaoda Shen ◽  
Xiaoquan Ding ◽  
...  

AbstractBioactive ceramics are promising candidates as 3D porous substrates for bone repair in bone regenerative medicine. However, they are often inefficient in clinical applications due to mismatching mechanical properties and compromised biological performances. Herein, the additional Sr dopant is hypothesized to readily adjust the mechanical and biodegradable properties of the dilute Mg-doped wollastonite bioceramic scaffolds with different pore geometries (cylindrical-, cubic-, gyroid-) by ceramic stereolithography. The results indicate that the compressive strength of Mg/Sr co-doped bioceramic scaffolds could be tuned simultaneously by the Sr dopant and pore geometry. The cylindrical-pore scaffolds exhibit strength decay with increasing Sr content, whereas the gyroid-pore scaffolds show increasing strength and Young’s modulus as the Sr concentration is increased from 0 to 5%. The ion release could also be adjusted by pore geometry in Tris buffer, and the high Sr content may trigger a faster scaffold bio-dissolution. These results demonstrate that the mechanical strengths of the bioceramic scaffolds can be controlled from the point at which their porous structures are designed. Moreover, scaffold bio-dissolution can be tuned by pore geometry and doping foreign ions. It is reasonable to consider the nonstoichiometric bioceramic scaffolds are promising for bone regeneration, especially when dealing with pathological bone defects.


Open Ceramics ◽  
2021 ◽  
pp. 100089
Author(s):  
Oscar Santoliquido ◽  
Francesco Camerota ◽  
Alice Rosa ◽  
Alberto Ortona

Sign in / Sign up

Export Citation Format

Share Document