Developing a three-dimensional tangential swirl plate photobioreactor to enhance mass transfer and flashlight effect for microalgal CO2 fixation

2021 ◽  
pp. 116837
Author(s):  
Yanmei Song ◽  
Jun Cheng ◽  
Xin Lai ◽  
Wangbiao Guo ◽  
Weijuan Yang
2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


Desalination ◽  
2015 ◽  
Vol 356 ◽  
pp. 328-348 ◽  
Author(s):  
Farhad Zamani ◽  
Jia Wei Chew ◽  
Ebrahim Akhondi ◽  
William B. Krantz ◽  
Anthony G. Fane

Author(s):  
Florian Wassermann ◽  
Sven Grundmann ◽  
Michael Kloss ◽  
Heinz-Peter Schiffer

Cyclone cooling is a promising method to enhance heat-transfer processes in future internal turbine-blade leading-edge cooling-ducts. The basic component of such cooling channels is the swirl generator, which induces a swirling movement of the coolant. The angular momentum generates stable, complex and three-dimensional flow structures of helical shape with alternating axial flow directions. Full three-dimensional and three-component velocity measurements using magnetic resonance velocimetry (3D3C-MRV) were conducted, with the aim to understand the complex structure of pipe flows with strong swirl. In order to mimic the effect of different installation concepts of the cyclone-cooling ducts an idealized bend-duct swirl-tube configuration with variable exit orifices has been investigated. Pronounced helical flow structures and distinct velocity zones could be found in this swirl flow. One substantial result is the identification of stationary helix-shaped streaks of high axial velocity in the direct vicinity of the wall. These findings are in good agreement with mass-transfer measurements that also show helix-shaped structures with increased mass transfer at the inner surface of the tube. According to the Reynolds analogy between heat and mass transfer, augmented heat-transfer processes in these areas are to be expected.


Sign in / Sign up

Export Citation Format

Share Document