Doubly periodic wave and folded solitary wave solutions for (2+1)-dimensional higher-order Broer–Kaup equation

2007 ◽  
Vol 31 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Wenhua Huang ◽  
Yulu Liu ◽  
Zhiming Lu

2006 ◽  
Vol 16 (08) ◽  
pp. 2235-2260 ◽  
Author(s):  
JIBIN LI ◽  
JIANHONG WU ◽  
HUAIPING ZHU

Using the method of planar dynamical systems to a higher order wave equations of KdV type, the existence of smooth and nonsmooth solitary wave, kink wave and uncountably infinite many periodic wave solutions is proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some spatial conditions, the exact explicit parametric representations of solitary wave solutions are determined.



2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
XiaoHua Liu ◽  
CaiXia He

By using the theory of planar dynamical systems to a coupled nonlinear wave equation, the existence of bell-shaped solitary wave solutions, kink-shaped solitary wave solutions, and periodic wave solutions is obtained. Under the different parametric values, various sufficient conditions to guarantee the existence of the above solutions are given. With the help of three different undetermined coefficient methods, we investigated the new exact explicit expression of all three bell-shaped solitary wave solutions and one kink solitary wave solutions with nonzero asymptotic value for a coupled nonlinear wave equation. The solutions cannot be deduced from the former references.



2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Ming Song ◽  
Zhengrong Liu

We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.



2021 ◽  
pp. 2150391
Author(s):  
Ghazala Akram ◽  
Naila Sajid

In this article, three mathematical techniques have been operationalized to discover novel solitary wave solutions of (2+1)-dimensional Maccari system, which also known as soliton equation. This model equation is usually of applicative relevance in hydrodynamics, nonlinear optics and plasma physics. The [Formula: see text] function, the hyperbolic function and the [Formula: see text]-expansion techniques are used to obtain the novel exact solutions of the (2+1)-dimensional Maccari system (arising in nonlinear optics and in plasma physics). Many novel solutions such as periodic wave solutions by [Formula: see text] function method, singular, combined-singular and periodic solutions by hyperbolic function method, hyperbolic, rational and trigonometric solutions by [Formula: see text]-expansion method are obtained. The exact solutions are shown through 3D graphics which present the movement of the obtained solutions.





2014 ◽  
Vol 35 (2) ◽  
pp. 167-176
Author(s):  
Xiao-xia Jian ◽  
Peng Zhang ◽  
S. C. Wong ◽  
Dian-liang Qiao ◽  
Kee-choo Choi


Sign in / Sign up

Export Citation Format

Share Document