scholarly journals Noncommutative geometry and the stability of circular orbits in a central force potential

2008 ◽  
Vol 37 (2) ◽  
pp. 324-331 ◽  
Author(s):  
Kourosh Nozari ◽  
Siamak Akhshabi
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1260
Author(s):  
Zinnat Hassan ◽  
Ghulam Mustafa ◽  
Pradyumn Kumar Sahoo

This article describes the study of wormhole solutions in f(Q) gravity with noncommutative geometry. Here, we considered two different f(Q) models—a linear model f(Q)=αQ and an exponential model f(Q)=Q−α1−e−Q, where Q is the non-metricity and α is the model parameter. In addition, we discussed the existence of wormhole solutions with the help of the Gaussian and Lorentzian distributions of these linear and exponential models. We investigated the feasible solutions and graphically analyzed the different properties of these models by taking appropriate values for the parameter. Moreover, we used the Tolman–Oppenheimer–Volkov (TOV) equation to check the stability of the wormhole solutions that we obtained. Hence, we found that the wormhole solutions obtained with our models are physically capable and stable.


2002 ◽  
Vol 16 (10n11) ◽  
pp. 351-362 ◽  
Author(s):  
MASANORI SUGAHARA ◽  
NIKOLAI N. BOGOLUBOV

Recently, new types of high temperature superconductors have been found which are characterized by the existence of circular molecular orbits in each unit site of 2D s/p electron system. In view of the characteristic, a new model of superconductivity is studied based on the stability of the correlated state of electrons in the 2D interconnection of circular orbits. This model gives an estimation of the upper bound of superfluidity transition temperature: T c ~ 130-400 K for fcc C 60, and T c ~ 110-340 K for hole-doped MgB 2.


1999 ◽  
Vol 172 ◽  
pp. 457-457
Author(s):  
M.A. Vashkovyak

The problem of satellite orbital evolution with the combined influence of a distant perturbing body and the planet oblateness is well known (Laplace, 1805; Lidov, 1962, 1973; Kozai, 1963; Kudielka, 1994, 1997). The case of near-circular orbits is investigated in more details in (Sekiguchi, 1961; Allan and Cook, 1964; Vashkovyak, 1974).


1983 ◽  
Vol 87 (21) ◽  
pp. 4309-4311 ◽  
Author(s):  
Peter W. Deutsch ◽  
Barbara N. Hale ◽  
Richard C. Ward ◽  
Donald A. Reago

1994 ◽  
Vol 267 (1) ◽  
pp. 161-166 ◽  
Author(s):  
L. G. Kiseleva ◽  
P. P. Eggleton ◽  
J. P. Anosova

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Peter K. F. Kuhfittig

This paper reexamines a special class of thin-shell wormholes that are unstable in general relativity in the framework of noncommutative geometry. It is shown that, as a consequence of the intrinsic uncertainty, these wormholes are stable to small linearized radial perturbations. Several different spacetimes are considered.


Sign in / Sign up

Export Citation Format

Share Document