high temperature superconductivity
Recently Published Documents


TOTAL DOCUMENTS

1361
(FIVE YEARS 134)

H-INDEX

75
(FIVE YEARS 8)

2022 ◽  
Vol 12 (2) ◽  
pp. 874
Author(s):  
Yao Wei ◽  
Francesco Macheda ◽  
Zelong Zhao ◽  
Terence Tse ◽  
Evgeny Plekhanov ◽  
...  

Hydrogen-rich superhydrides are promising high-Tc superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH10 at 170 GPa and CeH9 at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH16 and CeH16, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.


Author(s):  
John M. Tranquada

Abstract In honor of John Goodenough's centennial birthday, I discuss some of his insights into magnetism and the role of mixed valence in transition-metal oxides. His ideas form an important part of the continuing evolution of our understanding of these fascinating materials with a wide range of technologically-important functionalities. In particular, will mention connections to phenomena such as colossal magnetoresistance, enhanced thermopower, and high-temperature superconductivity.


Author(s):  
X. H. Zheng ◽  
J. X. Zheng

In superconductors, scattered electrons cover the entire surface of the Fermi sphere (circle in the figure, valency = 3). In the MP scheme in the article concerned, the shaded wedge confines coverage, causing errors in results.


Author(s):  
Mingyang Du ◽  
Zihan Zhang ◽  
Hao Song ◽  
Hongyu Yu ◽  
Tian Cui ◽  
...  

For the metal hydride MoH11, more than 60% of the electron–phonon coupling (λ) is contributed by hydrogen which leads to a diminishing role of the umklapp phonons.


2021 ◽  
Vol 9 ◽  
Author(s):  
J. F. Mitchell

The 2019 discovery of high temperature superconductivity in layered nickelate films, Nd1-xSrNiO2, has galvanized a community that has been studying nickelates for more than 30 years both as cuprate analogs and in their own right. On the surface, infinite layer nickelates, and their multilayer analogs, should be promising candidates based on our understanding of cuprates: square planar coordination and a parent d9 configuration that places a single hole in a dx2-y2 planar orbital makes nickelates seem poised for superconductivity. But creating crystals and films of sufficient quality of this d9 configuration in Ni1+ has proven to be a synthetic challenge, only recently overcome. These crystalline specimens are opening windows that shed new light on the cuprate-nickelate analogy and reveal nuances that leave the relationship between cuprates and nickelates very much an area open to debate. This Perspective gives a qualitative, phenomenological account of these newly discovered superconductors and multilayer members of the infinite layer nickelate family. The focus is on our current understanding of electronic and magnetic properties of these materials as well as some future opportunities, explored from the viewpoint of synthetic challenges and some suggested developments in materials discovery and growth to make further progress in this rejuvenated field.


2021 ◽  
Vol 9 ◽  
Author(s):  
Matthias Hepting ◽  
Mark P. M. Dean ◽  
Wei-Sheng Lee

Low-valence nickelates—including infinite-layer (IL) and trilayer (TL) compounds—are longstanding candidates for mimicking the high-temperature superconductivity of cuprates. A recent breakthrough in the field came with the discovery of superconductivity in hole-doped IL nickelates. Yet, the degree of similarity between low-valence nickelates and cuprates is the subject of a profound debate for which soft x-ray spectroscopy experiments at the Ni L- and O K-edge provided critical input. In this review, we will discuss the essential elements of the electronic structure of low-valance nickelates revealed by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). Furthermore, we will review magnetic excitations observed in the RIXS spectra of IL and TL nickelates, which exhibit characteristics that are partly reminiscent of those of cuprates.


2021 ◽  
Vol 119 (1) ◽  
pp. e2109406119
Author(s):  
Hong-Chen Jiang ◽  
Steven A. Kivelson

Unidirectional (“stripe”) charge density wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high-temperature superconductors, where it generally competes with superconductivity. Nonetheless, on theoretical grounds it has been conjectured that stripe order (or other forms of “optimal” inhomogeneity) may play an essential positive role in the mechanism of high-temperature superconductivity. Here, we report density matrix renormalization group studies of the Hubbard model on long four- and six-leg cylinders, where the hopping matrix elements transverse to the long direction are periodically modulated—mimicking the effect of putative period 2 stripe order. We find that even modest amplitude modulations can enhance the long-distance superconducting correlations by many orders of magnitude and drive the system into a phase with a substantial spin gap and superconducting quasi–long-range order with a Luttinger exponent, Ksc∼1.


2021 ◽  
Author(s):  
Nikolay A. Bogdanov ◽  
Giovanni Li Manni ◽  
Sandeep Sharma ◽  
Olle Gunnarsson ◽  
Ali Alavi

AbstractCuprates with corner-sharing CuO4 plaquettes have received much attention owing to the discoveries of high-temperature superconductivity and exotic states where spin and charge or spin and orbital degrees of freedom are separated. In these systems spins are strongly coupled antiferromagnetically via superexchange mechanisms, with high nearest-neighbour coupling varying among different compounds. The electronic properties of cuprates are also known to be highly sensitive to the presence, distance and displacement of apical oxygens perpendicular to the CuO2 planes. Here we present ab initio quantum chemistry calculations of the nearest-neighbour superexchange antiferromagnetic (AF) coupling J of two cuprates, Sr2CuO3 and La2CuO4. The former lacks apical oxygens, whilst the latter contain two apical oxygens per CuO2 unit completing a distorted octahedral environment around each Cu atom. Good agreement is obtained with experimental estimates for both systems. Analysis of the correlated wavefunctions together with extended superexchange models shows that there is an important synergetic effect of the Coulomb interaction and the O–Cu hopping, namely a correlated breathing-enhanced hopping mechanism. This is a new ingredient in superexchange models. Suppression of this mechanism leads to drastic reduction in the AF coupling, indicating that it is of primary importance in generating the strong interactions. We also find that J increases substantially as the distance between Cu and apical O is increased.


2021 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Victor Velasco ◽  
Marcello B. Silva Neto ◽  
Andrea Perali ◽  
Sandro Wimberger ◽  
Alan R. Bishop ◽  
...  

Because of its sensitivity to the instantaneous structure factor, S(Q,t = 0), Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for probing the dynamic structure of condensed matter systems in which the charge and lattice dynamics are coupled. When applied to hole-doped cuprate superconductors, EXAFS has revealed the presence of internal quantum tunneling polarons (IQTPs). An IQTP arises in EXAFS as a two-site distribution for certain Cu–O pairs, which is also duplicated in inelastic scattering but not observed in standard diffraction measurements. The Cu–Sr pair distribution has been found to be highly anharmonic and strongly correlated to both the IQTPs and to superconductivity, as, for example, in YSr2Cu2.75Mo0.25O7.54(Tc=84 K). In order to describe such nontrivial, anharmonic charge-lattice dynamics, we have proposed a model Hamiltonian for a prototype six-atom cluster, in which two Cu-apical-O IQTPs are charge-transfer bridged through Cu atoms by an O atom in the CuO2 plane and are anharmonically coupled via a Sr atom. By applying an exact diagonalization procedure to this cluster, we have verified that our model indeed produces an intricate interplay between charge and lattice dynamics. Then, by using the Kuramoto model for the synchronization of coupled quantum oscillators, we have found a first-order phase transition for the IQTPs into a synchronized, phase-locked phase. Most importantly, we have shown that this transition results specifically from the anharmonicity. Finally, we have provided a phase diagram showing the onset of the phase-locking of IQTPs as a function of the charge-lattice and anharmonic couplings in our model. We have found that the charge, initially confined to the apical oxygens, is partially pumped into the CuO2 plane in the synchronized phase, which suggests a possible connection between the synchronized dynamic structure and high-temperature superconductivity (HTSC) in doped cuprates.


2021 ◽  
Author(s):  
Xin Zhong ◽  
Ying Sun ◽  
Toshiaki Iitaka ◽  
Meiling Xu ◽  
Hanyu Liu ◽  
...  

Abstract Atomic metallic hydrogen (AMH) hosting high-temperature superconductivity has long been considered a holy grail in condensed matter physics and attracted great interest, but attempts to produce AMH remain in intense exploration and debate. Meanwhile, hydrogen-rich compounds known as superhydrides offer a promising route toward creating AMH-like state and property, as showcased by the recent prediction and ensuing synthesis of LaH10 that hosts extraordinary superconducting critical temperatures (Tc) of 250-260 K at 170-190 GPa. Here we show via advanced crystal structure search a series of hydrogen-superrich clathrate compounds MH18 (M: rare-earth/actinide metals) comprising H36-cage networks, which are predicted to host Tc up to 329 K at 350 GPa. An in-depth examination of these extreme superhydrides offers key insights for elucidating and further exploring ultimate phonon-mediated superconductivity in a broad class of AMH-like materials.


Sign in / Sign up

Export Citation Format

Share Document