Chaotic resonance in a fractional-order oscillator system with application to mechanical fault diagnosis

2021 ◽  
Vol 142 ◽  
pp. 110536
Author(s):  
Yuzhu He ◽  
Yuxuan Fu ◽  
Zijian Qiao ◽  
Yanmei Kang
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shulan Kong ◽  
Mehrdad Saif ◽  
Guozeng Cui

This study investigates estimation and fault diagnosis of fractional-order Lithium-ion battery system. Two simple and common types of observers are designed to address the design of fault diagnosis and estimation for the fractional-order systems. Fractional-order Luenberger observers are employed to generate residuals which are then used to investigate the feasibility of model based fault detection and isolation. Once a fault is detected and isolated, a fractional-order sliding mode observer is constructed to provide an estimate of the isolated fault. The paper presents some theoretical results for designing stable observers and fault estimators. In particular, the notion of stability in the sense of Mittag-Leffler is first introduced to discuss the state estimation error dynamics. Overall, the design of the Luenberger observer as well as the sliding mode observer can accomplish fault detection, fault isolation, and estimation. The effectiveness of the proposed strategy on a three-cell battery string system is demonstrated.


2020 ◽  
Vol 102 ◽  
pp. 365-375
Author(s):  
Xiaoyue Yang ◽  
Chunhua Yang ◽  
Chao Yang ◽  
Tao Peng ◽  
Zhiwen Chen ◽  
...  

Author(s):  
Kuo Chi ◽  
Jianshe Kang ◽  
Xinghui Zhang ◽  
Fei Zhao

Bearing is among the most widely used components in rotating machinery. Its failure can cause serious economic losses or even disasters. However, the fault-induced impulses are weak especially for the early failure. As to the bearing fault diagnosis, a novel bearing diagnosis method based on scale-varying fractional-order stochastic resonance (SFrSR) is proposed. Signal-to-noise ratio of the SFrSR output is regarded as the criterion for evaluating the stochastic resonance (SR) output. In the proposed method, by selecting the proper parameters (integration step [Formula: see text], amplitude gain [Formula: see text] and fractional-order [Formula: see text]) of SFrSR, the weak fault-induced impulses, the noise and the potential can be matched with each other. An optimal fractional-order dynamic system can be generated. To verify the proposed SFrSR, numerical tests and application verification are conducted in comparison with the traditional scale-varying first-order SR (SFiSR). The results prove that the parameters [Formula: see text] and [Formula: see text] affect the SFrSR effect seriously and the proposed SFrSR can enhance the weak signal while suppressing the noise. The SFrSR is more effective for bearing fault diagnosis than SFiSR.


Sign in / Sign up

Export Citation Format

Share Document