Geochemical and Sr–Nd isotope signatures of pristine slab melts and their residues (Sierra del Convento mélange, eastern Cuba)

2008 ◽  
Vol 255 (1-2) ◽  
pp. 120-133 ◽  
Author(s):  
Concepción Lázaro ◽  
Antonio García-Casco
Keyword(s):  
2017 ◽  
Vol 51 (6) ◽  
pp. 537-550
Author(s):  
Tasuku Akagi ◽  
Tomohiro Miura ◽  
Rie Takada ◽  
Kazuo Watanabe

Lithos ◽  
2021 ◽  
Vol 382-383 ◽  
pp. 105959
Author(s):  
Om Prakash Pandey ◽  
Klaus Mezger ◽  
Dewashish Upadhyay ◽  
Debajyoti Paul ◽  
Ajay Kumar Singh ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 326
Author(s):  
Tae-Hyeon Kim ◽  
Seung-Gu Lee ◽  
Jae-Young Yu

Carbonate formations of the Cambro-Ordovician Period occur in the Taebaek and Jeongseon areas, located in the central–eastern part of the Korean Peninsula. This study analyzed the rare earth element (REE) contents and Sr–Nd isotope ratios in these carbonates to elucidate their depositional environment and diagenetic history. The CI chondrite-normalized REE patterns of the carbonates showed negative Eu anomalies (EuN/(SmN × GdN)1/2 = 0.50 to 0.81), but no Ce anomaly (Ce/Ce* = CeN/(LaN2 × NdN)1/3 = 1.01 ± 0.06). The plot of log (Ce/Ce*) against sea water depth indicates that the carbonates were deposited in a shallow-marine environment such as a platform margin. The 87Sr/86Sr ratios in both Taebaek and Jeongseon carbonates were higher than those in the seawater at the corresponding geological time. The 87Sr/86Sr ratios and the values of (La/Yb)N and (La/Sm)N suggest that the carbonates in the areas experienced diagenetic processes several times. Their 143Nd/144Nd ratios varied from 0.511841 to 0.511980. The low εNd values and high 87Sr/86Sr ratios in the carbonates may have resulted from the interaction with the hydrothermal fluid derived from the intrusive granite during the Cretaceous Period.


2020 ◽  
Vol 157 (12) ◽  
pp. 2081-2088
Author(s):  
Sergey B Felitsyn ◽  
Eugeny S. Bogomolov

AbstractAn enhanced concentration of phosphorus has been found at the stratigraphic level of the disappearance of Ediacaran taxa in two areas, the Cis-Dniester region and the Moscow syneclise, on the East European Platform (EEP). The isotope composition of neodymium was determined in Fe sulphide and phosphorite in the same beds. Measured εNd(t) values in diagenetic phosphate nodules are similar to those in iron sulphide from the same layer. During the Ediacaran − Early Cambrian, accumulation of radiogenic Nd in the epeiric basins on the EEP increased progressively from −17.9 and −19.4 in pyrite from the sequence bottom to −7.9 and −8.5 in the Early Cambrian pyrite of the central part of the EEP. The Ediacaran phosphate nodules show εNd(t) ranging from −12.9 to −15.0, while that in the Early Cambrian nodules is typically c. −9.0. These data indicate the secular change in Nd isotope composition of the water reservoir on the EEP from Ediacaran to Cambrian.


Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


Sign in / Sign up

Export Citation Format

Share Document